論文の概要: Constant Rate Scheduling: Constant-Rate Distributional Change for Efficient Training and Sampling in Diffusion Models
- arxiv url: http://arxiv.org/abs/2411.12188v3
- Date: Tue, 03 Jun 2025 10:37:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-05 04:22:50.441626
- Title: Constant Rate Scheduling: Constant-Rate Distributional Change for Efficient Training and Sampling in Diffusion Models
- Title(参考訳): 定レートスケジューリング:拡散モデルにおける効率的な訓練とサンプリングのための定レート分布変化
- Authors: Shuntaro Okada, Kenji Doi, Ryota Yoshihashi, Hirokatsu Kataoka, Tomohiro Tanaka,
- Abstract要約: 拡散モデルにおける学習とサンプリングのためのノイズスケジュールを最適化する一般的な手法を提案する。
非条件およびクラス条件の画像生成タスクに対するアプローチの有効性を評価する。
トレーニングとサンプリングのスケジュールを最適化するために,本手法を用いることで,最先端のFIDスコア2.03を達成できた。
- 参考スコア(独自算出の注目度): 16.863038973001483
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a general approach to optimize noise schedules for training and sampling in diffusion models. Our approach optimizes the noise schedules to ensure a constant rate of change in the probability distribution of diffused data throughout the diffusion process. Any distance metric for measuring the probability-distributional change is applicable to our approach, and we introduce three distance metrics. We evaluated the effectiveness of our approach on unconditional and class-conditional image-generation tasks using the LSUN (Horse, Bedroom, Church), ImageNet, FFHQ, and CIFAR10 datasets. Through extensive experiments, we confirmed that our approach broadly improves the performance of pixel-space and latent-space diffusion models regardless of the dataset, sampler, and number of function evaluations ranging from 5 to 250. Notably, by using our approach for optimizing both training and sampling schedules, we achieved a state-of-the-art FID score of 2.03 without sacrificing mode coverage on LSUN Horse 256 $\times$ 256.
- Abstract(参考訳): 拡散モデルにおける学習とサンプリングのためのノイズスケジュールを最適化する一般的な手法を提案する。
提案手法は,拡散過程を通じて拡散されたデータの確率分布の変化率を一定にするために,ノイズスケジュールを最適化する。
確率分布変化を測定するための距離測定は, 提案手法に適用でき, 3つの距離測定基準を導入する。
我々は、LSUN(Horse, Bedroom, Church)、ImageNet、FFHQ、CIFAR10データセットを用いて、無条件およびクラス条件の画像生成タスクに対するアプローチの有効性を評価した。
大規模な実験により,本手法は,データセット,サンプリング器,関数評価回数の5~250の範囲にかかわらず,画素空間と潜時空間の拡散モデルの性能を広範囲に向上させることを確認した。
特に,トレーニングとサンプリングのスケジュールを最適化するために,LSUN Horse 256 $\times$256のモードカバレッジを犠牲にすることなく,最先端のFIDスコア2.03を達成した。
関連論文リスト
- ADiff4TPP: Asynchronous Diffusion Models for Temporal Point Processes [30.928368603673285]
本研究は,非同期ノイズスケジュールを持つ拡散モデルを用いて時間点過程をモデル化するための新しいアプローチを導入する。
本研究では,条件付き流れマッチングに基づく騒音スケジュールの一般的なファミリに対して,これらのモデルを効果的に訓練する目的を導出する。
提案手法は,時系列におけるイベントの潜在表現と最先端結果の連成分布を実現し,次のイベント間時間とイベントタイプをベンチマークデータセット上で予測する。
論文 参考訳(メタデータ) (2025-04-29T04:17:39Z) - Score-Optimal Diffusion Schedules [29.062842062257918]
高品質なサンプルを得るためには、適切な離散化スケジュールが不可欠である。
本稿では,最適な離散化スケジュールを適応的に選択するための新しいアルゴリズムを提案する。
学習したスケジュールは、これまで手動検索でのみ発見されていたパフォーマンススケジュールを復元する。
論文 参考訳(メタデータ) (2024-12-10T19:26:51Z) - Diffusion Priors for Variational Likelihood Estimation and Image Denoising [10.548018200066858]
本稿では,現実の雑音に対処するために,逆拡散過程における適応的確率推定とMAP推定を提案する。
実世界の多様なデータセットの実験と分析により,本手法の有効性が示された。
論文 参考訳(メタデータ) (2024-10-23T02:52:53Z) - Constrained Diffusion Models via Dual Training [80.03953599062365]
拡散プロセスは、トレーニングデータセットのバイアスを反映したサンプルを生成する傾向がある。
所望の分布に基づいて拡散制約を付与し,制約付き拡散モデルを構築する。
本稿では,制約付き拡散モデルを用いて,目的と制約の最適なトレードオフを実現する混合データ分布から新しいデータを生成することを示す。
論文 参考訳(メタデータ) (2024-08-27T14:25:42Z) - A Simple Early Exiting Framework for Accelerated Sampling in Diffusion Models [14.859580045688487]
拡散モデルの現実的なボトルネックはサンプリング速度である。
スコア推定に必要な計算を適応的に割り当てる新しいフレームワークを提案する。
本研究では,画像品質を損なうことなく,拡散モデルのサンプリングスループットを大幅に向上できることを示す。
論文 参考訳(メタデータ) (2024-08-12T05:33:45Z) - Immiscible Diffusion: Accelerating Diffusion Training with Noise Assignment [56.609042046176555]
準最適雑音データマッピングは拡散モデルの遅い訓練につながる。
物理学における不和性現象からインスピレーションを得て,不和性拡散を提案する。
我々のアプローチは極めて単純で、各画像の拡散可能な領域を制限するために1行のコードしか必要としない。
論文 参考訳(メタデータ) (2024-06-18T06:20:42Z) - Consistent Diffusion Meets Tweedie: Training Exact Ambient Diffusion Models with Noisy Data [74.2507346810066]
アンビエント拡散(アンビエント拡散、アンビエント拡散、アンビエント拡散、アンビエント拡散、アンビエント拡散、アンビエント拡散、アンビエント拡散、アンビエント拡散、アンビエント拡散、アンビエント拡散、アンビエント拡散、アンビエント拡散、アンビエント拡散、アンビエント拡散
本稿では,ノイズの多い学習データのみを考慮し,故障のない分布から確実にサンプルを採取する拡散モデルのトレーニングのための最初のフレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-20T14:22:12Z) - Blue noise for diffusion models [50.99852321110366]
本稿では,画像内および画像間の相関雑音を考慮した拡散モデルを提案する。
我々のフレームワークは、勾配流を改善するために、1つのミニバッチ内に画像間の相関を導入することができる。
本手法を用いて,各種データセットの質的,定量的な評価を行う。
論文 参考訳(メタデータ) (2024-02-07T14:59:25Z) - Diffusion Models With Learned Adaptive Noise [12.530583016267768]
本稿では,拡散過程がデータから学べるかどうかを考察する。
広く信じられている仮定は、ELBOはノイズプロセスに不変であるということである。
画像間で異なる速度でノイズを印加する学習拡散過程であるMULANを提案する。
論文 参考訳(メタデータ) (2023-12-20T18:00:16Z) - ShiftDDPMs: Exploring Conditional Diffusion Models by Shifting Diffusion
Trajectories [144.03939123870416]
本稿では,前処理に条件を導入することで,新しい条件拡散モデルを提案する。
いくつかのシフト規則に基づいて各条件に対して排他的拡散軌跡を割り当てるために、余剰潜在空間を用いる。
我々は textbfShiftDDPMs と呼ぶメソッドを定式化し、既存のメソッドの統一的な視点を提供する。
論文 参考訳(メタデータ) (2023-02-05T12:48:21Z) - Score-based Continuous-time Discrete Diffusion Models [102.65769839899315]
連続時間マルコフ連鎖を介して逆過程が認知されるマルコフジャンププロセスを導入することにより、拡散モデルを離散変数に拡張する。
条件境界分布の単純なマッチングにより、偏りのない推定器が得られることを示す。
提案手法の有効性を,合成および実世界の音楽と画像のベンチマークで示す。
論文 参考訳(メタデータ) (2022-11-30T05:33:29Z) - Markup-to-Image Diffusion Models with Scheduled Sampling [111.30188533324954]
画像生成の最近の進歩に基づき,画像にマークアップを描画するためのデータ駆動型アプローチを提案する。
このアプローチは拡散モデルに基づいており、デノナイジング操作のシーケンスを用いてデータの分布をパラメータ化する。
数式(La)、テーブルレイアウト(HTML)、シート音楽(LilyPond)、分子画像(SMILES)の4つのマークアップデータセットの実験を行った。
論文 参考訳(メタデータ) (2022-10-11T04:56:12Z) - Diffusion-GAN: Training GANs with Diffusion [135.24433011977874]
GAN(Generative Adversarial Network)は、安定してトレーニングすることが難しい。
フォワード拡散チェーンを利用してインスタンスノイズを生成する新しいGANフレームワークであるDiffusion-GANを提案する。
我々は,Diffusion-GANにより,最先端のGANよりも高い安定性とデータ効率で,よりリアルな画像を生成することができることを示す。
論文 参考訳(メタデータ) (2022-06-05T20:45:01Z) - Non Gaussian Denoising Diffusion Models [91.22679787578438]
ガンマ分布からのノイズは、画像および音声生成のための改善された結果をもたらすことを示す。
また,拡散過程におけるガウス雑音の混合を用いることで,単一分布に基づく拡散過程における性能が向上することを示す。
論文 参考訳(メタデータ) (2021-06-14T16:42:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。