Invariant Shape Representation Learning For Image Classification
- URL: http://arxiv.org/abs/2411.12201v1
- Date: Tue, 19 Nov 2024 03:39:43 GMT
- Title: Invariant Shape Representation Learning For Image Classification
- Authors: Tonmoy Hossain, Jing Ma, Jundong Li, Miaomiao Zhang,
- Abstract summary: In this paper, we introduce a novel framework that for the first time develops invariant shape representation learning (ISRL)
Our model ISRL is designed to jointly capture invariant features in latent shape spaces parameterized by deformable transformations.
By embedding the features that are invariant with regard to target variables in different environments, our model consistently offers more accurate predictions.
- Score: 41.610264291150706
- License:
- Abstract: Geometric shape features have been widely used as strong predictors for image classification. Nevertheless, most existing classifiers such as deep neural networks (DNNs) directly leverage the statistical correlations between these shape features and target variables. However, these correlations can often be spurious and unstable across different environments (e.g., in different age groups, certain types of brain changes have unstable relations with neurodegenerative disease); hence leading to biased or inaccurate predictions. In this paper, we introduce a novel framework that for the first time develops invariant shape representation learning (ISRL) to further strengthen the robustness of image classifiers. In contrast to existing approaches that mainly derive features in the image space, our model ISRL is designed to jointly capture invariant features in latent shape spaces parameterized by deformable transformations. To achieve this goal, we develop a new learning paradigm based on invariant risk minimization (IRM) to learn invariant representations of image and shape features across multiple training distributions/environments. By embedding the features that are invariant with regard to target variables in different environments, our model consistently offers more accurate predictions. We validate our method by performing classification tasks on both simulated 2D images, real 3D brain and cine cardiovascular magnetic resonance images (MRIs). Our code is publicly available at https://github.com/tonmoy-hossain/ISRL.
Related papers
- MGAug: Multimodal Geometric Augmentation in Latent Spaces of Image
Deformations [2.711740183729759]
We propose a novel model that generates augmenting transformations in a multimodal latent space of geometric deformations.
Experimental results show that our proposed approach outperforms all baselines by significantly improved prediction accuracy.
arXiv Detail & Related papers (2023-12-20T21:30:55Z) - Affine-Transformation-Invariant Image Classification by Differentiable
Arithmetic Distribution Module [8.125023712173686]
Convolutional Neural Networks (CNNs) have achieved promising results in image classification.
CNNs are vulnerable to affine transformations including rotation, translation, flip and shuffle.
In this work, we introduce a more robust substitute by incorporating distribution learning techniques.
arXiv Detail & Related papers (2023-09-01T22:31:32Z) - Learning Optimal Features via Partial Invariance [18.552839725370383]
Invariant Risk Minimization (IRM) is a popular framework that aims to learn robust models from multiple environments.
We show that IRM can over-constrain the predictor and to remedy this, we propose a relaxation via $textitpartial invariance$.
Several experiments, conducted both in linear settings as well as with deep neural networks on tasks over both language and image data, allow us to verify our conclusions.
arXiv Detail & Related papers (2023-01-28T02:48:14Z) - Geo-SIC: Learning Deformable Geometric Shapes in Deep Image Classifiers [8.781861951759948]
This paper presents Geo-SIC, the first deep learning model to learn deformable shapes in a deformation space for an improved performance of image classification.
We introduce a newly designed framework that (i) simultaneously derives features from both image and latent shape spaces with large intra-class variations.
We develop a boosted classification network, equipped with an unsupervised learning of geometric shape representations.
arXiv Detail & Related papers (2022-10-25T01:55:17Z) - Diffusion Visual Counterfactual Explanations [51.077318228247925]
Visual Counterfactual Explanations (VCEs) are an important tool to understand the decisions of an image.
Current approaches for the generation of VCEs are restricted to adversarially robust models and often contain non-realistic artefacts.
In this paper, we overcome this by generating Visual Diffusion Counterfactual Explanations (DVCEs) for arbitrary ImageNet classifiers.
arXiv Detail & Related papers (2022-10-21T09:35:47Z) - Scene Synthesis via Uncertainty-Driven Attribute Synchronization [52.31834816911887]
This paper introduces a novel neural scene synthesis approach that can capture diverse feature patterns of 3D scenes.
Our method combines the strength of both neural network-based and conventional scene synthesis approaches.
arXiv Detail & Related papers (2021-08-30T19:45:07Z) - NP-DRAW: A Non-Parametric Structured Latent Variable Modelfor Image
Generation [139.8037697822064]
We present a non-parametric structured latent variable model for image generation, called NP-DRAW.
It sequentially draws on a latent canvas in a part-by-part fashion and then decodes the image from the canvas.
arXiv Detail & Related papers (2021-06-25T05:17:55Z) - Semantic Change Detection with Asymmetric Siamese Networks [71.28665116793138]
Given two aerial images, semantic change detection aims to locate the land-cover variations and identify their change types with pixel-wise boundaries.
This problem is vital in many earth vision related tasks, such as precise urban planning and natural resource management.
We present an asymmetric siamese network (ASN) to locate and identify semantic changes through feature pairs obtained from modules of widely different structures.
arXiv Detail & Related papers (2020-10-12T13:26:30Z) - Encoding Robustness to Image Style via Adversarial Feature Perturbations [72.81911076841408]
We adapt adversarial training by directly perturbing feature statistics, rather than image pixels, to produce robust models.
Our proposed method, Adversarial Batch Normalization (AdvBN), is a single network layer that generates worst-case feature perturbations during training.
arXiv Detail & Related papers (2020-09-18T17:52:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.