CoRLD: Contrastive Representation Learning Of Deformable Shapes In Images
- URL: http://arxiv.org/abs/2503.17162v2
- Date: Mon, 24 Mar 2025 02:43:07 GMT
- Title: CoRLD: Contrastive Representation Learning Of Deformable Shapes In Images
- Authors: Tonmoy Hossain, Miaomiao Zhang,
- Abstract summary: We propose Contrastive Representation Learning of Deformable shapes (CoRLD) in learned deformation spaces.<n>We validate CoRLD on diverse datasets, including real brain magnetic resonance imaging (MRIs) and adrenal shapes derived from computed tomography (CT) scans.
- Score: 2.2954246824369218
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deformable shape representations, parameterized by deformations relative to a given template, have proven effective for improved image analysis tasks. However, their broader applicability is hindered by two major challenges. First, existing methods mainly rely on a known template during testing, which is impractical and limits flexibility. Second, they often struggle to capture fine-grained, voxel-level distinctions between similar shapes (e.g., anatomical variations among healthy individuals, those with mild cognitive impairment, and diseased states). To address these limitations, we propose a novel framework - Contrastive Representation Learning of Deformable shapes (CoRLD) in learned deformation spaces and demonstrate its effectiveness in the context of image classification. Our CoRLD leverages a class-aware contrastive supervised learning objective in latent deformation spaces, promoting proximity among representations of similar classes while ensuring separation of dissimilar groups. In contrast to previous deep learning networks that require a reference image as input to predict deformation changes, our approach eliminates this dependency. Instead, template images are utilized solely as ground truth in the loss function during the training process, making our model more flexible and generalizable to a wide range of medical applications. We validate CoRLD on diverse datasets, including real brain magnetic resonance imaging (MRIs) and adrenal shapes derived from computed tomography (CT) scans. Experimental results show that our model effectively extracts deformable shape features, which can be easily integrated with existing classifiers to substantially boost the classification accuracy. Our code is available at GitHub.
Related papers
- Invariant Shape Representation Learning For Image Classification [41.610264291150706]
In this paper, we introduce a novel framework that for the first time develops invariant shape representation learning (ISRL)
Our model ISRL is designed to jointly capture invariant features in latent shape spaces parameterized by deformable transformations.
By embedding the features that are invariant with regard to target variables in different environments, our model consistently offers more accurate predictions.
arXiv Detail & Related papers (2024-11-19T03:39:43Z) - Overcoming Dimensional Collapse in Self-supervised Contrastive Learning
for Medical Image Segmentation [2.6764957223405657]
We investigate the application of contrastive learning to the domain of medical image analysis.
Our findings reveal that MoCo v2, a state-of-the-art contrastive learning method, encounters dimensional collapse when applied to medical images.
To address this, we propose two key contributions: local feature learning and feature decorrelation.
arXiv Detail & Related papers (2024-02-22T15:02:13Z) - Forgery-aware Adaptive Transformer for Generalizable Synthetic Image
Detection [106.39544368711427]
We study the problem of generalizable synthetic image detection, aiming to detect forgery images from diverse generative methods.
We present a novel forgery-aware adaptive transformer approach, namely FatFormer.
Our approach tuned on 4-class ProGAN data attains an average of 98% accuracy to unseen GANs, and surprisingly generalizes to unseen diffusion models with 95% accuracy.
arXiv Detail & Related papers (2023-12-27T17:36:32Z) - Shape Matters: Detecting Vertebral Fractures Using Differentiable
Point-Based Shape Decoding [51.38395069380457]
Degenerative spinal pathologies are highly prevalent among the elderly population.
Timely diagnosis of osteoporotic fractures and other degenerative deformities facilitates proactive measures to mitigate the risk of severe back pain and disability.
In this study, we specifically explore the use of shape auto-encoders for vertebrae.
arXiv Detail & Related papers (2023-12-08T18:11:22Z) - Introducing Shape Prior Module in Diffusion Model for Medical Image
Segmentation [7.7545714516743045]
We propose an end-to-end framework called VerseDiff-UNet, which leverages the denoising diffusion probabilistic model (DDPM)
Our approach integrates the diffusion model into a standard U-shaped architecture.
We evaluate our method on a single dataset of spine images acquired through X-ray imaging.
arXiv Detail & Related papers (2023-09-12T03:05:00Z) - Shape-Erased Feature Learning for Visible-Infrared Person
Re-Identification [90.39454748065558]
Body shape is one of the significant modality-shared cues for VI-ReID.
We propose shape-erased feature learning paradigm that decorrelates modality-shared features in two subspaces.
Experiments on SYSU-MM01, RegDB, and HITSZ-VCM datasets demonstrate the effectiveness of our method.
arXiv Detail & Related papers (2023-04-09T10:22:10Z) - RecRecNet: Rectangling Rectified Wide-Angle Images by Thin-Plate Spline
Model and DoF-based Curriculum Learning [62.86400614141706]
We propose a new learning model, i.e., Rectangling Rectification Network (RecRecNet)
Our model can flexibly warp the source structure to the target domain and achieves an end-to-end unsupervised deformation.
Experiments show the superiority of our solution over the compared methods on both quantitative and qualitative evaluations.
arXiv Detail & Related papers (2023-01-04T15:12:57Z) - Geo-SIC: Learning Deformable Geometric Shapes in Deep Image Classifiers [8.781861951759948]
This paper presents Geo-SIC, the first deep learning model to learn deformable shapes in a deformation space for an improved performance of image classification.
We introduce a newly designed framework that (i) simultaneously derives features from both image and latent shape spaces with large intra-class variations.
We develop a boosted classification network, equipped with an unsupervised learning of geometric shape representations.
arXiv Detail & Related papers (2022-10-25T01:55:17Z) - Stochastic Planner-Actor-Critic for Unsupervised Deformable Image
Registration [33.72954116727303]
We present a novel reinforcement learning-based framework that performs step-wise registration of medical images with large deformations.
We evaluate our method on several 2D and 3D medical image datasets, some of which contain large deformations.
arXiv Detail & Related papers (2021-12-14T14:08:56Z) - DiffuseMorph: Unsupervised Deformable Image Registration Along
Continuous Trajectory Using Diffusion Models [31.826844124173984]
We present a novel approach of diffusion model-based probabilistic image registration, called DiffuseMorph.
Our model learns the score function of the deformation between moving and fixed images.
Our method can provide flexible and accurate deformation with a capability of topology preservation.
arXiv Detail & Related papers (2021-12-09T08:41:23Z) - Learning Deformable Image Registration from Optimization: Perspective,
Modules, Bilevel Training and Beyond [62.730497582218284]
We develop a new deep learning based framework to optimize a diffeomorphic model via multi-scale propagation.
We conduct two groups of image registration experiments on 3D volume datasets including image-to-atlas registration on brain MRI data and image-to-image registration on liver CT data.
arXiv Detail & Related papers (2020-04-30T03:23:45Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
We propose improvements over previous GAN-based medical image synthesis methods by jointly encoding the intrinsic relationship of geometry and shape.
The proposed method outperforms state-of-the-art segmentation methods on the public RETOUCH dataset having images captured from different acquisition procedures.
arXiv Detail & Related papers (2020-03-31T11:50:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.