Breathless: An 8-hour Performance Contrasting Human and Robot Expressiveness
- URL: http://arxiv.org/abs/2411.12361v2
- Date: Wed, 27 Nov 2024 02:14:56 GMT
- Title: Breathless: An 8-hour Performance Contrasting Human and Robot Expressiveness
- Authors: Catie Cuan, Tianshuang Qiu, Shreya Ganti, Ken Goldberg,
- Abstract summary: This paper describes the robot technology behind an original performance that pairs a human dancer with an industrial robot arm.
To control the robot arm, we combine a range of sinusoidal motions with varying amplitude, frequency and offset at each joint to evoke human motions common in physical labor.
More motions were developed using deep learning techniques for video-based human-pose tracking and extraction.
- Score: 16.69221972067975
- License:
- Abstract: This paper describes the robot technology behind an original performance that pairs a human dancer (Cuan) with an industrial robot arm for an eight-hour dance that unfolds over the timespan of an American workday. To control the robot arm, we combine a range of sinusoidal motions with varying amplitude, frequency and offset at each joint to evoke human motions common in physical labor such as stirring, digging, and stacking. More motions were developed using deep learning techniques for video-based human-pose tracking and extraction. We combine these pre-recorded motions with improvised robot motions created live by putting the robot into teach-mode and triggering force sensing from the robot joints onstage. All motions are combined with commercial and original music using a custom suite of python software with AppleScript, Keynote, and Zoom to facilitate on-stage communication with the dancer. The resulting performance contrasts the expressivity of the human body with the precision of robot machinery. Video, code and data are available on the project website: https://sites.google.com/playing.studio/breathless
Related papers
- Design and Control of a Bipedal Robotic Character [3.650193138379926]
This work aims to unify expressive, artist-directed motions and robust dynamic mobility for legged robots.
We introduce a new bipedal robot, designed with a focus on character-driven mechanical features.
We present a reinforcement learning-based control architecture to robustly execute artistic motions conditioned on command signals.
arXiv Detail & Related papers (2025-01-09T12:55:21Z) - Learning to Transfer Human Hand Skills for Robot Manipulations [12.797862020095856]
We present a method for teaching dexterous manipulation tasks to robots from human hand motion demonstrations.
Our approach learns a joint motion manifold that maps human hand movements, robot hand actions, and object movements in 3D, enabling us to infer one motion from others.
arXiv Detail & Related papers (2025-01-07T22:33:47Z) - Uniform vs. Lognormal Kinematics in Robots: Perceptual Preferences for Robotic Movements [2.9907287985468924]
Collaborative robots or cobots interact with humans in a common work environment.
This paper tries to analyze whether humans prefer a robot moving in a human or in a robotic fashion.
arXiv Detail & Related papers (2024-05-29T13:36:47Z) - HumanoidBench: Simulated Humanoid Benchmark for Whole-Body Locomotion and Manipulation [50.616995671367704]
We present a high-dimensional, simulated robot learning benchmark, HumanoidBench, featuring a humanoid robot equipped with dexterous hands.
Our findings reveal that state-of-the-art reinforcement learning algorithms struggle with most tasks, whereas a hierarchical learning approach achieves superior performance when supported by robust low-level policies.
arXiv Detail & Related papers (2024-03-15T17:45:44Z) - ImitationNet: Unsupervised Human-to-Robot Motion Retargeting via Shared Latent Space [9.806227900768926]
This paper introduces a novel deep-learning approach for human-to-robot motion.
Our method does not require paired human-to-robot data, which facilitates its translation to new robots.
Our model outperforms existing works regarding human-to-robot similarity in terms of efficiency and precision.
arXiv Detail & Related papers (2023-09-11T08:55:04Z) - Giving Robots a Hand: Learning Generalizable Manipulation with
Eye-in-Hand Human Video Demonstrations [66.47064743686953]
Eye-in-hand cameras have shown promise in enabling greater sample efficiency and generalization in vision-based robotic manipulation.
Videos of humans performing tasks, on the other hand, are much cheaper to collect since they eliminate the need for expertise in robotic teleoperation.
In this work, we augment narrow robotic imitation datasets with broad unlabeled human video demonstrations to greatly enhance the generalization of eye-in-hand visuomotor policies.
arXiv Detail & Related papers (2023-07-12T07:04:53Z) - Zero-Shot Robot Manipulation from Passive Human Videos [59.193076151832145]
We develop a framework for extracting agent-agnostic action representations from human videos.
Our framework is based on predicting plausible human hand trajectories.
We deploy the trained model zero-shot for physical robot manipulation tasks.
arXiv Detail & Related papers (2023-02-03T21:39:52Z) - HERD: Continuous Human-to-Robot Evolution for Learning from Human
Demonstration [57.045140028275036]
We show that manipulation skills can be transferred from a human to a robot through the use of micro-evolutionary reinforcement learning.
We propose an algorithm for multi-dimensional evolution path searching that allows joint optimization of both the robot evolution path and the policy.
arXiv Detail & Related papers (2022-12-08T15:56:13Z) - Synthesis and Execution of Communicative Robotic Movements with
Generative Adversarial Networks [59.098560311521034]
We focus on how to transfer on two different robotic platforms the same kinematics modulation that humans adopt when manipulating delicate objects.
We choose to modulate the velocity profile adopted by the robots' end-effector, inspired by what humans do when transporting objects with different characteristics.
We exploit a novel Generative Adversarial Network architecture, trained with human kinematics examples, to generalize over them and generate new and meaningful velocity profiles.
arXiv Detail & Related papers (2022-03-29T15:03:05Z) - Robotic Telekinesis: Learning a Robotic Hand Imitator by Watching Humans
on Youtube [24.530131506065164]
We build a system that enables any human to control a robot hand and arm, simply by demonstrating motions with their own hand.
The robot observes the human operator via a single RGB camera and imitates their actions in real-time.
We leverage this data to train a system that understands human hands and retargets a human video stream into a robot hand-arm trajectory that is smooth, swift, safe, and semantically similar to the guiding demonstration.
arXiv Detail & Related papers (2022-02-21T18:59:59Z) - Show Me What You Can Do: Capability Calibration on Reachable Workspace
for Human-Robot Collaboration [83.4081612443128]
We show that a short calibration using REMP can effectively bridge the gap between what a non-expert user thinks a robot can reach and the ground-truth.
We show that this calibration procedure not only results in better user perception, but also promotes more efficient human-robot collaborations.
arXiv Detail & Related papers (2021-03-06T09:14:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.