Ultra-Sparse Memory Network
- URL: http://arxiv.org/abs/2411.12364v1
- Date: Tue, 19 Nov 2024 09:24:34 GMT
- Title: Ultra-Sparse Memory Network
- Authors: Zihao Huang, Qiyang Min, Hongzhi Huang, Defa Zhu, Yutao Zeng, Ran Guo, Xun Zhou,
- Abstract summary: This work introduces UltraMem, incorporating large-scale, ultra-sparse memory layer to address these limitations.
We show that our method achieves state-of-the-art inference speed and model performance within a given computational budget.
- Score: 8.927205198458994
- License:
- Abstract: It is widely acknowledged that the performance of Transformer models is exponentially related to their number of parameters and computational complexity. While approaches like Mixture of Experts (MoE) decouple parameter count from computational complexity, they still face challenges in inference due to high memory access costs. This work introduces UltraMem, incorporating large-scale, ultra-sparse memory layer to address these limitations. Our approach significantly reduces inference latency while maintaining model performance. We also investigate the scaling laws of this new architecture, demonstrating that it not only exhibits favorable scaling properties but outperforms traditional models. In our experiments, we train networks with up to 20 million memory slots. The results show that our method achieves state-of-the-art inference speed and model performance within a given computational budget.
Related papers
- LaMamba-Diff: Linear-Time High-Fidelity Diffusion Models Based on Local Attention and Mamba [54.85262314960038]
Local Attentional Mamba blocks capture both global contexts and local details with linear complexity.
Our model exhibits exceptional scalability and surpasses the performance of DiT across various model scales on ImageNet at 256x256 resolution.
Compared to state-of-the-art diffusion models on ImageNet 256x256 and 512x512, our largest model presents notable advantages, such as a reduction of up to 62% GFLOPs.
arXiv Detail & Related papers (2024-08-05T16:39:39Z) - SHERL: Synthesizing High Accuracy and Efficient Memory for Resource-Limited Transfer Learning [63.93193829913252]
We propose an innovative METL strategy called SHERL for resource-limited scenarios.
In the early route, intermediate outputs are consolidated via an anti-redundancy operation.
In the late route, utilizing minimal late pre-trained layers could alleviate the peak demand on memory overhead.
arXiv Detail & Related papers (2024-07-10T10:22:35Z) - Lean Attention: Hardware-Aware Scalable Attention Mechanism for the Decode-Phase of Transformers [4.674454841332859]
Transformer-based models have emerged as one of the most widely used architectures for natural language processing.
These huge models are memory hungry and incur significant inference latency even on cutting edge AI-accelerators.
We propose LeanAttention, a scalable technique of computing self-attention for the token-generation phase.
arXiv Detail & Related papers (2024-05-17T00:52:39Z) - AI and Memory Wall [81.06494558184049]
We show how memory bandwidth can become the dominant bottleneck for decoder models.
We argue for a redesign in model architecture, training, and deployment strategies to overcome this memory limitation.
arXiv Detail & Related papers (2024-03-21T04:31:59Z) - Pre-gated MoE: An Algorithm-System Co-Design for Fast and Scalable Mixture-of-Expert Inference [23.207326766883405]
Mixture-of-Experts (MoE) is able to scale its model size without proportionally scaling up its computational requirements.
Pre-gated MoE employs our novel pre-gating function which alleviates the dynamic nature of sparse expert activation.
We demonstrate that Pre-gated MoE is able to improve performance, reduce GPU memory consumption, while also maintaining the same level of model quality.
arXiv Detail & Related papers (2023-08-23T11:25:37Z) - SqueezeLLM: Dense-and-Sparse Quantization [80.32162537942138]
Main bottleneck for generative inference with LLMs is memory bandwidth, rather than compute, for single batch inference.
We introduce SqueezeLLM, a post-training quantization framework that enables lossless compression to ultra-low precisions of up to 3-bit.
Our framework incorporates two novel ideas: (i) sensitivity-based non-uniform quantization, which searches for the optimal bit precision assignment based on second-order information; and (ii) the Dense-and-Sparse decomposition that stores outliers and sensitive weight values in an efficient sparse format.
arXiv Detail & Related papers (2023-06-13T08:57:54Z) - DeepSpeed Inference: Enabling Efficient Inference of Transformer Models
at Unprecedented Scale [20.558091867632445]
DeepSpeed Inference is a comprehensive system solution for transformer model inference.
It reduces latency by up to 7.3X over the state-of-the-art for latency-oriented scenarios and increases throughput by over 1.5x for throughput-oriented scenarios.
It can inference 25x larger models than with GPU-only solutions, while delivering a high throughput of 84 TFLOPS (over $50%$ of A6000 peak)
arXiv Detail & Related papers (2022-06-30T18:01:08Z) - A Model or 603 Exemplars: Towards Memory-Efficient Class-Incremental
Learning [56.450090618578]
Class-Incremental Learning (CIL) aims to train a model with limited memory size to meet this requirement.
We show that when counting the model size into the total budget and comparing methods with aligned memory size, saving models do not consistently work.
We propose a simple yet effective baseline, denoted as MEMO for Memory-efficient Expandable MOdel.
arXiv Detail & Related papers (2022-05-26T08:24:01Z) - Learned Queries for Efficient Local Attention [11.123272845092611]
Self-attention mechanism in vision transformers suffers from high latency and inefficient memory utilization.
We propose a new shift-invariant local attention layer, called query and attend (QnA), that aggregates the input locally in an overlapping manner.
We show improvements in speed and memory complexity while achieving comparable accuracy with state-of-the-art models.
arXiv Detail & Related papers (2021-12-21T18:52:33Z) - Memformer: A Memory-Augmented Transformer for Sequence Modeling [55.780849185884996]
We present Memformer, an efficient neural network for sequence modeling.
Our model achieves linear time complexity and constant memory space complexity when processing long sequences.
arXiv Detail & Related papers (2020-10-14T09:03:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.