Intrinsic exceptional point -- a challenge in quantum theory
- URL: http://arxiv.org/abs/2411.12501v1
- Date: Tue, 19 Nov 2024 13:40:30 GMT
- Title: Intrinsic exceptional point -- a challenge in quantum theory
- Authors: Miloslav Znojil,
- Abstract summary: In spite of its unbroken $cal PT-$symmetry, the popular imaginary cubic oscillator Hamiltonian $H(IC)=p2+rm ix3$ does not satisfy all of the necessary postulates of quantum mechanics.
The failure is due to the intrinsic exceptional point'' (IEP) features of $H(IC)$ and, in particular, to the phenomenon of a high-energy parallelization of its bound-state-mimicking eigenvectors.
- Score: 0.0
- License:
- Abstract: In spite of its unbroken ${\cal PT}-$symmetry, the popular imaginary cubic oscillator Hamiltonian $H^{(IC)}=p^2+{\rm i}x^3$ does not satisfy all of the necessary postulates of quantum mechanics. The failure is due to the ``intrinsic exceptional point'' (IEP) features of $H^{(IC)}$ and, in particular, to the phenomenon of a high-energy asymptotic parallelization of its bound-state-mimicking eigenvectors. In the paper it is argued that the operator $H^{(IC)}$ (and the like) can only be interpreted as a manifestly unphysical, singular IEP limit of a hypothetical one-parametric family of certain standard quantum Hamiltonians. For explanation, an ample use is made of perturbation theory and of multiple analogies between IEPs and conventional Kato's exceptional points.
Related papers
- Generalized Einstein-Podolsky-Rosen Steering Paradox [18.5699135339787]
We present a generalized EPR steering paradox, which predicts a contradictory equality $2_Q=left( 1+deltaright)_C$.
We test the paradox through a two-setting steering protocol, and find that the state is steerable if some specific measurement requirements are satisfied.
Our construction also enlightens the building of EPR steering inequality, which may contribute to some schemes for typical quantum teleportation and quantum key distributions.
arXiv Detail & Related papers (2024-05-06T01:25:11Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Geometric relative entropies and barycentric Rényi divergences [16.385815610837167]
monotone quantum relative entropies define monotone R'enyi quantities whenever $P$ is a probability measure.
We show that monotone quantum relative entropies define monotone R'enyi quantities whenever $P$ is a probability measure.
arXiv Detail & Related papers (2022-07-28T17:58:59Z) - Confluences of exceptional points and a systematic classification of
quantum catastrophes [0.0]
Specific quantum phase transitions of our interest are assumed associated with the fall of a closed, unitary quantum system into its exceptional-point (EP) singularity.
The physical realization of such a "quantum catastrophe" (connected, typically, with an instantaneous loss of the diagonalizability of the corresponding parameter-dependent Hamiltonian $H(g)$) depends, naturally, on the formal mathematical characteristics of the EP.
We illustrate and discuss, using several solvable toy models, some of the most elementary mechanisms of the EP-merger realization of the process of the transition $g to g(EP)$
arXiv Detail & Related papers (2022-02-05T13:41:08Z) - Extracting classical Lyapunov exponent from one-dimensional quantum
mechanics [0.0]
A commutator $[x(t),p]$ in one-dimensional quantum mechanics exhibits remarkable properties.
The Lyapunov exponent computed through the out-of-time-order correlator (OTOC) $langle [x(t),p]2 rangle $ precisely agrees with the classical one.
We find two situations in which the OTOCs show exponential growth the classical Lyapunov exponent of the peak.
arXiv Detail & Related papers (2021-05-20T08:57:30Z) - Graph-Theoretic Framework for Self-Testing in Bell Scenarios [37.067444579637076]
Quantum self-testing is the task of certifying quantum states and measurements using the output statistics solely.
We present a new approach for quantum self-testing in Bell non-locality scenarios.
arXiv Detail & Related papers (2021-04-27T08:15:01Z) - $\PT$ Symmetry and Renormalisation in Quantum Field Theory [62.997667081978825]
Quantum systems governed by non-Hermitian Hamiltonians with $PT$ symmetry are special in having real energy eigenvalues bounded below and unitary time evolution.
We show how $PT$ symmetry may allow interpretations that evade ghosts and instabilities present in an interpretation of the theory within a Hermitian framework.
arXiv Detail & Related papers (2021-03-27T09:46:36Z) - Quantum phase transitions mediated by clustered non-Hermitian
degeneracies [0.0]
A family of phase transitions in closed and open quantum systems is known to be mediated by a non-Hermitian degeneracy.
In our paper the EP-mediated quantum phase transitions with $K>1$ are called "clustered"
For the sake of maximal simplicity our attention is restricted to the real-harmonic-oscillator-type N by N matrix Hamiltonians.
arXiv Detail & Related papers (2021-02-24T13:17:55Z) - The principle of majorization: application to random quantum circuits [68.8204255655161]
Three classes of circuits were considered: (i) universal, (ii) classically simulatable, and (iii) neither universal nor classically simulatable.
We verified that all the families of circuits satisfy on average the principle of majorization.
Clear differences appear in the fluctuations of the Lorenz curves associated to states.
arXiv Detail & Related papers (2021-02-19T16:07:09Z) - Non-Hermitian N-state degeneracies: unitary realizations via
antisymmetric anharmonicities [0.0]
degeneracy of an $N-$plet of bound states is studied in the framework of quantum theory of closed (i.e., unitary) systems.
For an underlying Hamiltonian $H=H(lambda)$ the degeneracy occurs at a Kato's exceptional point.
arXiv Detail & Related papers (2020-10-28T14:41:52Z) - The Emergent Fine Structure Constant of Quantum Spin Ice Is Large [0.0]
Condensed matter systems provide alternative vacua' exhibiting emergent low-energy properties drastically different from those of the standard model.
We show that the two greatly differ in their fine-structure constant $alpha$, which parametrizes how strongly matter couples to light.
We find that $alpha_mathrmQSI$ can be tuned all the way from zero up to what is believed to be the textitstrongest possible coupling.
arXiv Detail & Related papers (2020-09-09T18:14:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.