Estimating Dark Matter Halo Masses in Simulated Galaxy Clusters with Graph Neural Networks
- URL: http://arxiv.org/abs/2411.12629v1
- Date: Tue, 19 Nov 2024 16:40:17 GMT
- Title: Estimating Dark Matter Halo Masses in Simulated Galaxy Clusters with Graph Neural Networks
- Authors: Nikhil Garuda, John F. Wu, Dylan Nelson, Annalisa Pillepich,
- Abstract summary: We present a graph neural network (GNN) model for predicting $rmM_rmhalo$ from stellar mass in simulated galaxy clusters.
Unlike traditional machine learning models like random forests, our GNN captures the information-rich substructure of galaxy clusters.
A GNN model trained on the TNG-Cluster dataset and independently tested on the TNG300 simulation achieves superior predictive performance compared to other baseline models.
- Score: 0.0
- License:
- Abstract: Galaxies grow and evolve in dark matter halos. Because dark matter is not visible, galaxies' halo masses ($\rm{M}_{\rm{halo}}$) must be inferred indirectly. We present a graph neural network (GNN) model for predicting $\rm{M}_{\rm{halo}}$ from stellar mass ($\rm{M}_{*}$) in simulated galaxy clusters using data from the IllustrisTNG simulation suite. Unlike traditional machine learning models like random forests, our GNN captures the information-rich substructure of galaxy clusters by using spatial and kinematic relationships between galaxy neighbour. A GNN model trained on the TNG-Cluster dataset and independently tested on the TNG300 simulation achieves superior predictive performance compared to other baseline models we tested. Future work will extend this approach to different simulations and real observational datasets to further validate the GNN model's ability to generalise.
Related papers
- Neural P$^3$M: A Long-Range Interaction Modeling Enhancer for Geometric
GNNs [66.98487644676906]
We introduce Neural P$3$M, a versatile enhancer of geometric GNNs to expand the scope of their capabilities.
It exhibits flexibility across a wide range of molecular systems and demonstrates remarkable accuracy in predicting energies and forces.
It also achieves an average improvement of 22% on the OE62 dataset while integrating with various architectures.
arXiv Detail & Related papers (2024-09-26T08:16:59Z) - CHARM: Creating Halos with Auto-Regressive Multi-stage networks [1.6987257996124416]
CHARM is a novel method for creating mock halo catalogs.
We show that the mock halo catalogs and painted galaxy catalogs have the same statistical properties as obtained from $N$-body simulations in both real space and redshift space.
arXiv Detail & Related papers (2024-09-13T18:00:06Z) - Semi-Supervised Domain Adaptation for Cross-Survey Galaxy Morphology
Classification and Anomaly Detection [57.85347204640585]
We develop a Universal Domain Adaptation method DeepAstroUDA.
It can be applied to datasets with different types of class overlap.
For the first time, we demonstrate the successful use of domain adaptation on two very different observational datasets.
arXiv Detail & Related papers (2022-11-01T18:07:21Z) - Inferring Structural Parameters of Low-Surface-Brightness-Galaxies with
Uncertainty Quantification using Bayesian Neural Networks [70.80563014913676]
We show that a Bayesian Neural Network (BNN) can be used for the inference, with uncertainty, of such parameters from simulated low-surface-brightness galaxy images.
Compared to traditional profile-fitting methods, we show that the uncertainties obtained using BNNs are comparable in magnitude, well-calibrated, and the point estimates of the parameters are closer to the true values.
arXiv Detail & Related papers (2022-07-07T17:55:26Z) - Learning cosmology and clustering with cosmic graphs [0.0]
We train deep learning models on thousands of galaxy catalogues from the state-of-the-art hydrodynamic simulations of the CAMELS project.
We first show that GNNs can learn to compute the power spectrum of galaxy catalogues with a few percent accuracy.
We then train GNNs to perform likelihood-free inference at the galaxy-field level.
arXiv Detail & Related papers (2022-04-28T18:00:02Z) - Inferring halo masses with Graph Neural Networks [0.5804487044220691]
We build a model that infers the mass of a halo given the positions, velocities, stellar masses, and radii of the galaxies it hosts.
We use Graph Neural Networks (GNNs) that are designed to work with irregular and sparse data.
Our model is able to constrain the masses of the halos with a $sim$0.2 dex accuracy.
arXiv Detail & Related papers (2021-11-16T18:37:53Z) - Satellite galaxy abundance dependency on cosmology in Magneticum
simulations [101.18253437732933]
We build an emulator of satellite abundance based on cosmological parameters.
We find that $A$ and $beta$ depend on cosmological parameters, even if weakly.
We also show that satellite abundance cosmology dependency differs between full-physics (FP) simulations, dark-matter only (DMO) and non-radiative simulations.
arXiv Detail & Related papers (2021-10-11T18:00:02Z) - Towards a method to anticipate dark matter signals with deep learning at
the LHC [58.720142291102135]
We study several simplified dark matter (DM) models and their signatures at the LHC using neural networks.
We focus on the usual monojet plus missing transverse energy channel, but to train the algorithms we organize the data in 2D histograms instead of event-by-event arrays.
This results in a large performance boost to distinguish between standard model (SM) only and SM plus new physics signals.
arXiv Detail & Related papers (2021-05-25T15:38:13Z) - Fast and Accurate Non-Linear Predictions of Universes with Deep Learning [21.218297581239664]
We build a V-Net based model that transforms fast linear predictions into fully nonlinear predictions from numerical simulations.
Our NN model learns to emulate the simulations down to small scales and is both faster and more accurate than the current state-of-the-art approximate methods.
arXiv Detail & Related papers (2020-12-01T03:30:37Z) - DeepShadows: Separating Low Surface Brightness Galaxies from Artifacts
using Deep Learning [70.80563014913676]
We investigate the use of convolutional neural networks (CNNs) for the problem of separating low-surface-brightness galaxies from artifacts in survey images.
We show that CNNs offer a very promising path in the quest to study the low-surface-brightness universe.
arXiv Detail & Related papers (2020-11-24T22:51:08Z) - DeepMerge: Classifying High-redshift Merging Galaxies with Deep Neural
Networks [0.0]
We show the use of convolutional neural networks (CNNs) for the task of distinguishing between merging and non-merging galaxies in simulated images.
We extract images of merging and non-merging galaxies from the Illustris-1 cosmological simulation and apply observational and experimental noise.
The test set classification accuracy of the CNN is $79%$ for pristine and $76%$ for noisy.
arXiv Detail & Related papers (2020-04-24T20:36:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.