Attribute Inference Attacks for Federated Regression Tasks
- URL: http://arxiv.org/abs/2411.12697v1
- Date: Tue, 19 Nov 2024 18:06:06 GMT
- Title: Attribute Inference Attacks for Federated Regression Tasks
- Authors: Francesco Diana, Othmane Marfoq, Chuan Xu, Giovanni Neglia, Frédéric Giroire, Eoin Thomas,
- Abstract summary: Federated Learning (FL) enables clients to collaboratively train a global machine learning model while keeping their data localized.
Recent studies have revealed that the training phase of FL is vulnerable to reconstruction attacks.
We propose novel model-based AIAs specifically designed for regression tasks in FL environments.
- Score: 14.152503562997662
- License:
- Abstract: Federated Learning (FL) enables multiple clients, such as mobile phones and IoT devices, to collaboratively train a global machine learning model while keeping their data localized. However, recent studies have revealed that the training phase of FL is vulnerable to reconstruction attacks, such as attribute inference attacks (AIA), where adversaries exploit exchanged messages and auxiliary public information to uncover sensitive attributes of targeted clients. While these attacks have been extensively studied in the context of classification tasks, their impact on regression tasks remains largely unexplored. In this paper, we address this gap by proposing novel model-based AIAs specifically designed for regression tasks in FL environments. Our approach considers scenarios where adversaries can either eavesdrop on exchanged messages or directly interfere with the training process. We benchmark our proposed attacks against state-of-the-art methods using real-world datasets. The results demonstrate a significant increase in reconstruction accuracy, particularly in heterogeneous client datasets, a common scenario in FL. The efficacy of our model-based AIAs makes them better candidates for empirically quantifying privacy leakage for federated regression tasks.
Related papers
- Formal Logic-guided Robust Federated Learning against Poisoning Attacks [6.997975378492098]
Federated Learning (FL) offers a promising solution to the privacy concerns associated with centralized Machine Learning (ML)
FL is vulnerable to various security threats, including poisoning attacks, where adversarial clients manipulate the training data or model updates to degrade overall model performance.
We present a defense mechanism designed to mitigate poisoning attacks in federated learning for time-series tasks.
arXiv Detail & Related papers (2024-11-05T16:23:19Z) - Towards Robust Federated Learning via Logits Calibration on Non-IID Data [49.286558007937856]
Federated learning (FL) is a privacy-preserving distributed management framework based on collaborative model training of distributed devices in edge networks.
Recent studies have shown that FL is vulnerable to adversarial examples, leading to a significant drop in its performance.
In this work, we adopt the adversarial training (AT) framework to improve the robustness of FL models against adversarial example (AE) attacks.
arXiv Detail & Related papers (2024-03-05T09:18:29Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
Federated learning enables joint training of machine learning models from distributed clients without sharing their local data.
One key challenge in federated learning is to handle non-identically distributed data across the clients.
We propose a novel federated learning framework with projected trajectory regularization (FedPTR) for tackling the data issue.
arXiv Detail & Related papers (2023-12-22T02:12:08Z) - FreqFed: A Frequency Analysis-Based Approach for Mitigating Poisoning
Attacks in Federated Learning [98.43475653490219]
Federated learning (FL) is susceptible to poisoning attacks.
FreqFed is a novel aggregation mechanism that transforms the model updates into the frequency domain.
We demonstrate that FreqFed can mitigate poisoning attacks effectively with a negligible impact on the utility of the aggregated model.
arXiv Detail & Related papers (2023-12-07T16:56:24Z) - Client-side Gradient Inversion Against Federated Learning from Poisoning [59.74484221875662]
Federated Learning (FL) enables distributed participants to train a global model without sharing data directly to a central server.
Recent studies have revealed that FL is vulnerable to gradient inversion attack (GIA), which aims to reconstruct the original training samples.
We propose Client-side poisoning Gradient Inversion (CGI), which is a novel attack method that can be launched from clients.
arXiv Detail & Related papers (2023-09-14T03:48:27Z) - Approximate and Weighted Data Reconstruction Attack in Federated Learning [1.802525429431034]
distributed learning (FL) enables clients to collaborate on building a machine learning model without sharing their private data.
Recent data reconstruction attacks demonstrate that an attacker can recover clients' training data based on the parameters shared in FL.
We propose an approximation method, which makes attacking FedAvg scenarios feasible by generating the intermediate model updates of the clients' local training processes.
arXiv Detail & Related papers (2023-08-13T17:40:56Z) - Avoid Adversarial Adaption in Federated Learning by Multi-Metric
Investigations [55.2480439325792]
Federated Learning (FL) facilitates decentralized machine learning model training, preserving data privacy, lowering communication costs, and boosting model performance through diversified data sources.
FL faces vulnerabilities such as poisoning attacks, undermining model integrity with both untargeted performance degradation and targeted backdoor attacks.
We define a new notion of strong adaptive adversaries, capable of adapting to multiple objectives simultaneously.
MESAS is the first defense robust against strong adaptive adversaries, effective in real-world data scenarios, with an average overhead of just 24.37 seconds.
arXiv Detail & Related papers (2023-06-06T11:44:42Z) - Local Model Reconstruction Attacks in Federated Learning and their Uses [9.14750410129878]
Local model reconstruction attack allows the adversary to trigger other classical attacks in a more effective way.
We propose a novel model-based attribute inference attack in federated learning leveraging the local model reconstruction attack.
Our work provides a new angle for designing powerful and explainable attacks to effectively quantify the privacy risk in FL.
arXiv Detail & Related papers (2022-10-28T15:27:03Z) - Do Gradient Inversion Attacks Make Federated Learning Unsafe? [70.0231254112197]
Federated learning (FL) allows the collaborative training of AI models without needing to share raw data.
Recent works on the inversion of deep neural networks from model gradients raised concerns about the security of FL in preventing the leakage of training data.
In this work, we show that these attacks presented in the literature are impractical in real FL use-cases and provide a new baseline attack.
arXiv Detail & Related papers (2022-02-14T18:33:12Z) - Information Stealing in Federated Learning Systems Based on Generative
Adversarial Networks [0.5156484100374059]
We mounted adversarial attacks on a federated learning (FL) environment using three different datasets.
The attacks leveraged generative adversarial networks (GANs) to affect the learning process.
We reconstructed the real data of the victim from the shared global model parameters with all the applied datasets.
arXiv Detail & Related papers (2021-08-02T08:12:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.