論文の概要: A Review of Reinforcement Learning in Financial Applications
- arxiv url: http://arxiv.org/abs/2411.12746v1
- Date: Fri, 01 Nov 2024 01:03:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-24 05:33:15.528294
- Title: A Review of Reinforcement Learning in Financial Applications
- Title(参考訳): 金融分野における強化学習の展望
- Authors: Yahui Bai, Yuhe Gao, Runzhe Wan, Sheng Zhang, Rui Song,
- Abstract要約: 強化学習(RL)は、金融における意思決定タスクを解決する大きな可能性を示している。
我々は、金融業界におけるRLの広範な活用を妨げる説明可能性、マルコフ決定プロセス(MDP)モデリング、ロバスト性などの課題を明らかにする。
本稿では,ベンチマーク,コンテキストRL,マルチエージェントRL,モデルベースRLなどの今後の研究方向性を提案する。
- 参考スコア(独自算出の注目度): 12.813502592542388
- License:
- Abstract: In recent years, there has been a growing trend of applying Reinforcement Learning (RL) in financial applications. This approach has shown great potential to solve decision-making tasks in finance. In this survey, we present a comprehensive study of the applications of RL in finance and conduct a series of meta-analyses to investigate the common themes in the literature, such as the factors that most significantly affect RL's performance compared to traditional methods. Moreover, we identify challenges including explainability, Markov Decision Process (MDP) modeling, and robustness that hinder the broader utilization of RL in the financial industry and discuss recent advancements in overcoming these challenges. Finally, we propose future research directions, such as benchmarking, contextual RL, multi-agent RL, and model-based RL to address these challenges and to further enhance the implementation of RL in finance.
- Abstract(参考訳): 近年,金融アプリケーションに強化学習(RL)を適用する傾向が高まっている。
このアプローチは、金融における意思決定タスクを解決する大きな可能性を示している。
本稿では,RLのファイナンスへの応用に関する包括的研究を行い,従来の手法と比較してRLの性能に最も影響を与える要因など,文献における共通テーマを調査するための一連のメタ分析を行った。
さらに、金融業界におけるRLの広範な活用を妨げる説明可能性、マルコフ決定プロセス(MDP)モデリング、ロバスト性などの課題を特定し、これらの課題を克服する最近の進歩について議論する。
最後に、これらの課題に対処し、金融におけるRLの実装をさらに強化するために、ベンチマーク、コンテキストRL、マルチエージェントRL、モデルベースRLなどの今後の研究方向性を提案する。
関連論文リスト
- Towards Sample-Efficiency and Generalization of Transfer and Inverse Reinforcement Learning: A Comprehensive Literature Review [50.67937325077047]
本稿では,転送および逆強化学習(T-IRL)によるRLアルゴリズムのサンプル効率と一般化を実現するための総合的なレビューを行う。
以上の結果から,最近の研究成果の大部分は,人間のループとシム・トゥ・リアル戦略を活用することで,上記の課題に対処していることが示唆された。
IRL構造の下では、経験の少ない移行と、そのようなフレームワークのマルチエージェントおよびマルチインテンション問題への拡張を必要とするトレーニングスキームが近年研究者の優先事項となっている。
論文 参考訳(メタデータ) (2024-11-15T15:18:57Z) - The Evolution of Reinforcement Learning in Quantitative Finance: A Survey [3.8535927070486697]
強化学習(RL)は過去10年間で大きな進歩を遂げており、金融分野のアプリケーションへの関心が高まっている。
この調査は167の出版物を批判的に評価し、金融における多様なRLアプリケーションとフレームワークを調査している。
金融市場は、その複雑さ、マルチエージェントの性質、情報非対称性、および固有のランダム性によって特徴付けられ、RLの興味深いテストベッドとして機能する。
論文 参考訳(メタデータ) (2024-08-20T15:15:10Z) - A Survey of Large Language Models for Financial Applications: Progress, Prospects and Challenges [60.546677053091685]
大規模言語モデル(LLM)は金融分野における機械学習アプリケーションに新たな機会を開放した。
我々は、従来のプラクティスを変革し、イノベーションを促進する可能性に焦点を当て、様々な金融業務におけるLLMの適用について検討する。
本稿では,既存の文献を言語タスク,感情分析,財務時系列,財務推論,エージェントベースモデリング,その他の応用分野に分類するための調査を紹介する。
論文 参考訳(メタデータ) (2024-06-15T16:11:35Z) - A Survey on Causal Reinforcement Learning [41.645270300009436]
本稿では、CRL(Causal Reinforcement Learning)の作業のレビュー、CRL手法のレビュー、RLへの因果性から潜在的な機能について検討する。
特に,既存のCRLアプローチを,因果関係に基づく情報が事前に与えられるか否かに応じて2つのカテゴリに分けた。
我々は、マルコフ決定プロセス(MDP)、部分観測マルコフ決定プロセス(POMDP)、マルチアーム帯域(MAB)、動的治療レジーム(DTR)など、様々なモデルの形式化の観点から、各カテゴリを解析する。
論文 参考訳(メタデータ) (2023-02-10T12:25:08Z) - A Survey of Meta-Reinforcement Learning [69.76165430793571]
我々は,メタRLと呼ばれるプロセスにおいて,機械学習問題自体として,より優れたRLアルゴリズムを開発した。
本稿では,タスク分布の存在と各タスクに利用可能な学習予算に基づいて,高レベルでメタRL研究をクラスタ化する方法について議論する。
RL実践者のための標準ツールボックスにメタRLを組み込むことの道程について,オープンな問題を提示することによって,結論を下す。
論文 参考訳(メタデータ) (2023-01-19T12:01:41Z) - Reinforcement Learning Applied to Trading Systems: A Survey [5.118560450410779]
近年の成果と強化学習の有名さは、取引業務における採用率を高めている。
このレビューは、研究者の標準遵守へのコミットメントによって、この研究分野の発展を促進する試みである。
論文 参考訳(メタデータ) (2022-11-01T21:26:12Z) - FinRL-Meta: A Universe of Near-Real Market Environments for Data-Driven
Deep Reinforcement Learning in Quantitative Finance [58.77314662664463]
FinRL-Metaは、データ駆動型金融強化学習のための市場環境の宇宙を構築している。
まず、FinRL-MetaはDRLベースの戦略の設計パイプラインから財務データ処理を分離する。
第2に、FinRL-Metaは様々な取引タスクに数百の市場環境を提供している。
論文 参考訳(メタデータ) (2021-12-13T16:03:37Z) - Recent Advances in Reinforcement Learning in Finance [3.0079490585515343]
データ量の増加による金融業界の急激な変化は、データ処理やデータ分析に関する技術に革命をもたらした。
強化学習(RL)による新たな発展は、大量の財務データをフル活用することができる。
論文 参考訳(メタデータ) (2021-12-08T19:55:26Z) - Reinforcement Learning for Quantitative Trading [36.85034299183786]
強化学習(RL)は、ロボット工学やビデオゲームなど多くの分野において大きな関心を集めている。
RLの影響は広く、最近、多くの挑戦的なQTタスクを克服する能力を示している。
本稿では,QTタスクに対するRLに基づく手法に関する総合的な研究成果の提供を目的とする。
論文 参考訳(メタデータ) (2021-09-28T16:32:10Z) - Towards Continual Reinforcement Learning: A Review and Perspectives [69.48324517535549]
我々は,連続的強化学習(RL)に対する異なる定式化とアプローチの文献レビューの提供を目的とする。
まだ初期段階だが、継続的なrlの研究は、よりインクリメンタルな強化学習者を開発することを約束している。
これには、医療、教育、物流、ロボット工学などの分野の応用が含まれる。
論文 参考訳(メタデータ) (2020-12-25T02:35:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。