A Review of Reinforcement Learning in Financial Applications
- URL: http://arxiv.org/abs/2411.12746v1
- Date: Fri, 01 Nov 2024 01:03:10 GMT
- Title: A Review of Reinforcement Learning in Financial Applications
- Authors: Yahui Bai, Yuhe Gao, Runzhe Wan, Sheng Zhang, Rui Song,
- Abstract summary: Reinforcement Learning (RL) has shown great potential to solve decision-making tasks in finance.
We identify challenges including explainability, Markov Decision Process (MDP) modeling, and robustness that hinder the broader utilization of RL in the financial industry.
We propose future research directions, such as benchmarking, contextual RL, multi-agent RL, and model-based RL.
- Score: 12.813502592542388
- License:
- Abstract: In recent years, there has been a growing trend of applying Reinforcement Learning (RL) in financial applications. This approach has shown great potential to solve decision-making tasks in finance. In this survey, we present a comprehensive study of the applications of RL in finance and conduct a series of meta-analyses to investigate the common themes in the literature, such as the factors that most significantly affect RL's performance compared to traditional methods. Moreover, we identify challenges including explainability, Markov Decision Process (MDP) modeling, and robustness that hinder the broader utilization of RL in the financial industry and discuss recent advancements in overcoming these challenges. Finally, we propose future research directions, such as benchmarking, contextual RL, multi-agent RL, and model-based RL to address these challenges and to further enhance the implementation of RL in finance.
Related papers
- Towards Sample-Efficiency and Generalization of Transfer and Inverse Reinforcement Learning: A Comprehensive Literature Review [50.67937325077047]
This paper is devoted to a comprehensive review of realizing the sample efficiency and generalization of RL algorithms through transfer and inverse reinforcement learning (T-IRL)
Our findings denote that a majority of recent research works have dealt with the aforementioned challenges by utilizing human-in-the-loop and sim-to-real strategies.
Under the IRL structure, training schemes that require a low number of experience transitions and extension of such frameworks to multi-agent and multi-intention problems have been the priority of researchers in recent years.
arXiv Detail & Related papers (2024-11-15T15:18:57Z) - The Evolution of Reinforcement Learning in Quantitative Finance [3.8535927070486697]
Reinforcement Learning (RL) has experienced significant advancement over the past decade, prompting a growing interest in applications within finance.
This survey critically evaluates 167 publications, exploring diverse RL applications and frameworks in finance.
Financial markets, marked by their complexity, multi-agent nature, information asymmetry, and inherent randomness, serve as an intriguing test-bed for RL.
arXiv Detail & Related papers (2024-08-20T15:15:10Z) - A Survey of Large Language Models for Financial Applications: Progress, Prospects and Challenges [60.546677053091685]
Large language models (LLMs) have unlocked novel opportunities for machine learning applications in the financial domain.
We explore the application of LLMs on various financial tasks, focusing on their potential to transform traditional practices and drive innovation.
We highlight this survey for categorizing the existing literature into key application areas, including linguistic tasks, sentiment analysis, financial time series, financial reasoning, agent-based modeling, and other applications.
arXiv Detail & Related papers (2024-06-15T16:11:35Z) - A Survey on Causal Reinforcement Learning [41.645270300009436]
We offer a review of Causal Reinforcement Learning (CRL) works, offer a review of CRL methods, and investigate the potential functionality from causality toward RL.
In particular, we divide existing CRL approaches into two categories according to whether their causality-based information is given in advance or not.
We analyze each category in terms of the formalization of different models, ranging from the Markov Decision Process (MDP), Partially Observed Markov Decision Process (POMDP), Multi-Arm Bandits (MAB), and Dynamic Treatment Regime (DTR)
arXiv Detail & Related papers (2023-02-10T12:25:08Z) - A Survey of Meta-Reinforcement Learning [69.76165430793571]
We cast the development of better RL algorithms as a machine learning problem itself in a process called meta-RL.
We discuss how, at a high level, meta-RL research can be clustered based on the presence of a task distribution and the learning budget available for each individual task.
We conclude by presenting the open problems on the path to making meta-RL part of the standard toolbox for a deep RL practitioner.
arXiv Detail & Related papers (2023-01-19T12:01:41Z) - Reinforcement Learning Applied to Trading Systems: A Survey [5.118560450410779]
The recent achievements and the notoriety of Reinforcement Learning have increased its adoption in trading tasks.
This review attempts to promote the development of this field of study by researchers' commitment to standards adherence.
arXiv Detail & Related papers (2022-11-01T21:26:12Z) - FinRL-Meta: A Universe of Near-Real Market Environments for Data-Driven
Deep Reinforcement Learning in Quantitative Finance [58.77314662664463]
FinRL-Meta builds a universe of market environments for data-driven financial reinforcement learning.
First, FinRL-Meta separates financial data processing from the design pipeline of DRL-based strategy.
Second, FinRL-Meta provides hundreds of market environments for various trading tasks.
arXiv Detail & Related papers (2021-12-13T16:03:37Z) - Recent Advances in Reinforcement Learning in Finance [3.0079490585515343]
The rapid changes in the finance industry due to the increasing amount of data have revolutionized techniques on data processing and data analysis.
New developments from reinforcement learning (RL) are able to make full use of the large amount of financial data.
arXiv Detail & Related papers (2021-12-08T19:55:26Z) - Reinforcement Learning for Quantitative Trading [36.85034299183786]
reinforcement learning (RL) has garnered significant interest in many domains such as robotics and video games.
RL's impact is pervasive, recently demonstrating its ability to conquer many challenging QT tasks.
This paper aims at providing a comprehensive survey of research efforts on RL-based methods for QT tasks.
arXiv Detail & Related papers (2021-09-28T16:32:10Z) - Towards Continual Reinforcement Learning: A Review and Perspectives [69.48324517535549]
We aim to provide a literature review of different formulations and approaches to continual reinforcement learning (RL)
While still in its early days, the study of continual RL has the promise to develop better incremental reinforcement learners.
These include applications such as those in the fields of healthcare, education, logistics, and robotics.
arXiv Detail & Related papers (2020-12-25T02:35:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.