Supervised Autoencoders with Fractionally Differentiated Features and Triple Barrier Labelling Enhance Predictions on Noisy Data
- URL: http://arxiv.org/abs/2411.12753v1
- Date: Wed, 06 Nov 2024 08:43:03 GMT
- Title: Supervised Autoencoders with Fractionally Differentiated Features and Triple Barrier Labelling Enhance Predictions on Noisy Data
- Authors: Bartosz Bieganowski, Robert Ćlepaczuk,
- Abstract summary: Using the Sharpe and Information Ratios, it examines the impact of noise augmentation and triple barrier labeling on risk-adjusted returns.
Findings indicate that supervised autoencoders, with balanced noise augmentation and bottleneck size, significantly boost strategy effectiveness.
However, excessive noise and large bottleneck sizes can impair performance.
- Score: 0.0
- License:
- Abstract: This paper investigates the enhancement of financial time series forecasting with the use of neural networks through supervised autoencoders (SAE), to improve investment strategy performance. Using the Sharpe and Information Ratios, it specifically examines the impact of noise augmentation and triple barrier labeling on risk-adjusted returns. The study focuses on Bitcoin, Litecoin, and Ethereum as the traded assets from January 1, 2016, to April 30, 2022. Findings indicate that supervised autoencoders, with balanced noise augmentation and bottleneck size, significantly boost strategy effectiveness. However, excessive noise and large bottleneck sizes can impair performance.
Related papers
- Towards Resource-Efficient Federated Learning in Industrial IoT for Multivariate Time Series Analysis [50.18156030818883]
Anomaly and missing data constitute a thorny problem in industrial applications.
Deep learning enabled anomaly detection has emerged as a critical direction.
The data collected in edge devices contain user privacy.
arXiv Detail & Related papers (2024-11-06T15:38:31Z) - Towards Effective and Efficient Non-autoregressive Decoding Using Block-based Attention Mask [74.64216073678617]
AMD performs parallel NAR inference within contiguous blocks of output labels concealed using attention masks.
A beam search algorithm is designed to leverage a dynamic fusion of CTC, AR Decoder, and AMD probabilities.
Experiments on the LibriSpeech-100hr corpus suggest the tripartite Decoder incorporating the AMD module produces a maximum decoding speed-up ratio of 1.73x.
arXiv Detail & Related papers (2024-06-14T13:42:38Z) - Facilitating Feature and Topology Lightweighting: An Ethereum Transaction Graph Compression Method for Malicious Account Detection [3.877894934465948]
Bitcoin has become one of the primary global platforms for cryptocurrency, playing an important role in promoting the diversification of the financial ecosystem.
Previous regulatory methods usually detect malicious accounts through feature engineering or large-scale transaction graph mining.
We propose an Transaction Graph Compression method named TGC4Eth, which assists malicious detection by lightweighting both features and topology of the transaction graph.
arXiv Detail & Related papers (2024-05-14T02:21:20Z) - Supervised Autoencoder MLP for Financial Time Series Forecasting [0.0]
The study focuses on the S&P 500 index, EUR/USD, and BTC/USD as the traded assets from January 1, 2010, to April 30, 2022.
It specifically examines the impact of noise augmentation and triple barrier labeling on risk-adjusted returns, using the Sharpe and Information Ratios.
Findings indicate that supervised autoencoders, with balanced noise augmentation and bottleneck size, significantly boost strategy effectiveness.
arXiv Detail & Related papers (2024-04-02T11:44:37Z) - Enhancing Price Prediction in Cryptocurrency Using Transformer Neural
Network and Technical Indicators [0.5439020425819]
methodology integrates the use of technical indicators, a Performer neural network, and BiLSTM.
The proposed method has been applied to the hourly and daily timeframes of the major cryptocurrencies.
arXiv Detail & Related papers (2024-03-06T10:53:12Z) - Combating Bilateral Edge Noise for Robust Link Prediction [56.43882298843564]
We propose an information-theory-guided principle, Robust Graph Information Bottleneck (RGIB), to extract reliable supervision signals and avoid representation collapse.
Two instantiations, RGIB-SSL and RGIB-REP, are explored to leverage the merits of different methodologies.
Experiments on six datasets and three GNNs with diverse noisy scenarios verify the effectiveness of our RGIB instantiations.
arXiv Detail & Related papers (2023-11-02T12:47:49Z) - Cryptocurrency Portfolio Optimization by Neural Networks [81.20955733184398]
This paper proposes an effective algorithm based on neural networks to take advantage of these investment products.
A deep neural network, which outputs the allocation weight of each asset at a time interval, is trained to maximize the Sharpe ratio.
A novel loss term is proposed to regulate the network's bias towards a specific asset, thus enforcing the network to learn an allocation strategy that is close to a minimum variance strategy.
arXiv Detail & Related papers (2023-10-02T12:33:28Z) - Deep Policy Gradient Methods in Commodity Markets [0.0]
Traders play an important role in stabilizing markets by providing liquidity and reducing volatility.
This thesis investigates the effectiveness of deep reinforcement learning methods in commodities trading.
arXiv Detail & Related papers (2023-06-14T11:50:23Z) - Transfer Ranking in Finance: Applications to Cross-Sectional Momentum
with Data Scarcity [2.3204178451683264]
We introduce Fused Networks -- a novel and hybrid parameter-sharing transfer ranking model.
The model fuses information extracted using an encoder-attention module operated on a source dataset.
It mitigates the issue of models with poor generalisability that are a consequence of training on scarce target data.
arXiv Detail & Related papers (2022-08-21T21:34:11Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
In this paper, an effective anomaly detection framework is proposed utilizing Bayesian Optimization technique.
The performance of the considered algorithms is evaluated using the ISCX 2012 dataset.
Experimental results show the effectiveness of the proposed framework in term of accuracy rate, precision, low-false alarm rate, and recall.
arXiv Detail & Related papers (2020-08-05T19:29:35Z) - Neural Networks and Value at Risk [59.85784504799224]
We perform Monte-Carlo simulations of asset returns for Value at Risk threshold estimation.
Using equity markets and long term bonds as test assets, we investigate neural networks.
We find our networks when fed with substantially less data to perform significantly worse.
arXiv Detail & Related papers (2020-05-04T17:41:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.