Facilitating Feature and Topology Lightweighting: An Ethereum Transaction Graph Compression Method for Malicious Account Detection
- URL: http://arxiv.org/abs/2405.08278v3
- Date: Tue, 2 Jul 2024 02:59:02 GMT
- Title: Facilitating Feature and Topology Lightweighting: An Ethereum Transaction Graph Compression Method for Malicious Account Detection
- Authors: Jiajun Zhou, Xuanze Chen, Shengbo Gong, Chenkai Hu, Chengxiang Jin, Shanqing Yu, Qi Xuan,
- Abstract summary: Bitcoin has become one of the primary global platforms for cryptocurrency, playing an important role in promoting the diversification of the financial ecosystem.
Previous regulatory methods usually detect malicious accounts through feature engineering or large-scale transaction graph mining.
We propose an Transaction Graph Compression method named TGC4Eth, which assists malicious detection by lightweighting both features and topology of the transaction graph.
- Score: 3.877894934465948
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Ethereum has become one of the primary global platforms for cryptocurrency, playing an important role in promoting the diversification of the financial ecosystem. However, the relative lag in regulation has led to a proliferation of malicious activities in Ethereum, posing a serious threat to fund security. Existing regulatory methods usually detect malicious accounts through feature engineering or large-scale transaction graph mining. However, due to the immense scale of transaction data and malicious attacks, these methods suffer from inefficiency and low robustness during data processing and anomaly detection. In this regard, we propose an Ethereum Transaction Graph Compression method named TGC4Eth, which assists malicious account detection by lightweighting both features and topology of the transaction graph. At the feature level, we select transaction features based on their low importance to improve the robustness of the subsequent detection models against feature evasion attacks; at the topology level, we employ focusing and coarsening processes to compress the structure of the transaction graph, thereby improving both data processing and inference efficiency of detection models. Extensive experiments demonstrate that TGC4Eth significantly improves the computational efficiency of existing detection models while preserving the connectivity of the transaction graph. Furthermore, TGC4Eth enables existing detection models to maintain stable performance and exhibit high robustness against feature evasion attacks.
Related papers
- Across-Platform Detection of Malicious Cryptocurrency Transactions via Account Interaction Learning [19.2372535101502]
Existing malicious transaction detection methods rely on large amounts of labeled data.
We propose ShadowEyes, a novel malicious transaction detection method.
We conduct extensive experiments using public datasets to evaluate the performance of ShadowEyes.
arXiv Detail & Related papers (2024-10-31T02:01:42Z) - PREM: A Simple Yet Effective Approach for Node-Level Graph Anomaly
Detection [65.24854366973794]
Node-level graph anomaly detection (GAD) plays a critical role in identifying anomalous nodes from graph-structured data in domains such as medicine, social networks, and e-commerce.
We introduce a simple method termed PREprocessing and Matching (PREM for short) to improve the efficiency of GAD.
Our approach streamlines GAD, reducing time and memory consumption while maintaining powerful anomaly detection capabilities.
arXiv Detail & Related papers (2023-10-18T02:59:57Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
We propose a two-stage framework tailored for small object detection based on the Coarse-to-fine pipeline and Feature Imitation learning.
CFINet achieves state-of-the-art performance on the large-scale small object detection benchmarks, SODA-D and SODA-A.
arXiv Detail & Related papers (2023-08-18T13:13:09Z) - Transaction Fraud Detection via an Adaptive Graph Neural Network [64.9428588496749]
We propose an Adaptive Sampling and Aggregation-based Graph Neural Network (ASA-GNN) that learns discriminative representations to improve the performance of transaction fraud detection.
A neighbor sampling strategy is performed to filter noisy nodes and supplement information for fraudulent nodes.
Experiments on three real financial datasets demonstrate that the proposed method ASA-GNN outperforms state-of-the-art ones.
arXiv Detail & Related papers (2023-07-11T07:48:39Z) - Blockchain Large Language Models [65.7726590159576]
This paper presents a dynamic, real-time approach to detecting anomalous blockchain transactions.
The proposed tool, BlockGPT, generates tracing representations of blockchain activity and trains from scratch a large language model to act as a real-time Intrusion Detection System.
arXiv Detail & Related papers (2023-04-25T11:56:18Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
We propose the first Source-Free Unsupervised Domain Adaptation (SFUDA) method for Facial Expression Recognition (FER)
Our method exploits self-supervised pretraining to learn good feature representations from the target data.
We validate the effectiveness of our method in four adaptation setups, proving that it consistently outperforms existing SFUDA methods when applied to FER.
arXiv Detail & Related papers (2022-10-11T08:24:50Z) - Blockchain Phishing Scam Detection via Multi-channel Graph
Classification [1.6980621769406918]
Phishing scam detection methods will protect possible victims and build a healthier blockchain ecosystem.
We defined the transaction pattern graphs for users and transformed the phishing scam detection into a graph classification task.
The proposed multi-channel graph classification model (MCGC) is more able to detect potential phishing by extracting the transaction pattern features of the target users.
arXiv Detail & Related papers (2021-08-19T02:59:55Z) - Identity Inference on Blockchain using Graph Neural Network [5.5927440285709835]
Identity inference, which aims to make a preliminary inference about account identity, plays a significant role in blockchain security.
We present a novel approach to analyze user's behavior from the perspective of the transaction subgraph, which naturally transforms the identity inference task into a graph classification pattern.
We also propose a generic end-to-end graph neural network model, named $textI2 textBGNN$, which can accept subgraph as input and learn a function mapping the transaction subgraph pattern to account identity.
arXiv Detail & Related papers (2021-04-14T00:15:38Z) - Temporal-Amount Snapshot MultiGraph for Ethereum Transaction Tracking [5.579169055801065]
We study the problem of transaction tracking via link prediction, which provides a deeper understanding of transactions from a network perspective.
Specifically, we introduce an embedding based link prediction framework that is composed of temporal-amount snapshot multigraph (TASMG) and present temporal-amount walk (TAW)
By taking the realistic rules and features of transaction networks into consideration, we propose TASMG to model transaction records as a temporal-amount network and then present TAW to effectively embed accounts via their transaction records.
arXiv Detail & Related papers (2021-02-16T08:21:16Z) - Graph Backdoor [53.70971502299977]
We present GTA, the first backdoor attack on graph neural networks (GNNs)
GTA departs in significant ways: it defines triggers as specific subgraphs, including both topological structures and descriptive features.
It can be instantiated for both transductive (e.g., node classification) and inductive (e.g., graph classification) tasks.
arXiv Detail & Related papers (2020-06-21T19:45:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.