論文の概要: A Novel Approach to Eliminating Hallucinations in Large Language Model-Assisted Causal Discovery
- arxiv url: http://arxiv.org/abs/2411.12759v1
- Date: Sat, 16 Nov 2024 03:06:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-21 16:13:22.791315
- Title: A Novel Approach to Eliminating Hallucinations in Large Language Model-Assisted Causal Discovery
- Title(参考訳): 大規模言語モデルによる因果発見における幻覚の除去のための新しいアプローチ
- Authors: Grace Sng, Yanming Zhang, Klaus Mueller,
- Abstract要約: 因果発見に大型言語モデル(LLM)を用いる場合,幻覚の存在が示唆された。
本稿では,品質データが利用可能な場合の幻覚を低減するために,検索拡張生成(RAG)を提案する。
- 参考スコア(独自算出の注目度): 21.2023350773338
- License:
- Abstract: The increasing use of large language models (LLMs) in causal discovery as a substitute for human domain experts highlights the need for optimal model selection. This paper presents the first hallucination survey of popular LLMs for causal discovery. We show that hallucinations exist when using LLMs in causal discovery so the choice of LLM is important. We propose using Retrieval Augmented Generation (RAG) to reduce hallucinations when quality data is available. Additionally, we introduce a novel method employing multiple LLMs with an arbiter in a debate to audit edges in causal graphs, achieving a comparable reduction in hallucinations to RAG.
- Abstract(参考訳): 人間のドメインエキスパートの代用として、因果発見における大規模言語モデル(LLM)の利用の増加は、最適なモデル選択の必要性を強調している。
本稿では,原因発見のためのLLMの幻覚調査について紹介する。
因果発見にLSMを用いる場合,幻覚は存在し,LSMの選択が重要である。
本稿では,品質データが利用可能な場合の幻覚を低減するために,検索拡張生成(RAG)を提案する。
さらに,複数のLSMとアービターを用いた新たな手法を導入し,因果グラフのエッジを監査し,RAGに対する幻覚の低減を実現した。
関連論文リスト
- A Survey of Hallucination in Large Visual Language Models [48.794850395309076]
幻覚の存在は、様々な分野におけるLVLMの可能性と実用性を制限している。
LVLMの構造と幻覚の発生の主な原因を紹介する。
LVLMの幻覚評価ベンチマークについて述べる。
論文 参考訳(メタデータ) (2024-10-20T10:58:58Z) - Mitigating Entity-Level Hallucination in Large Language Models [11.872916697604278]
本稿では,大規模言語モデル(LLM)における幻覚の検出・緩和手法として,幻覚検出(DRAD)に基づく動的検索拡張を提案する。
実験の結果,LDMにおける幻覚の検出と緩和の両面において,DRADは優れた性能を示した。
論文 参考訳(メタデータ) (2024-07-12T16:47:34Z) - Hallucination Detection: Robustly Discerning Reliable Answers in Large Language Models [70.19081534515371]
大規模言語モデル(LLM)は様々な自然言語処理タスクで広く採用されている。
それらは、入力源から逸脱する不信または矛盾したコンテンツを生成し、深刻な結果をもたらす。
本稿では,LLMの生成した回答の幻覚を効果的に検出するために,RelDという頑健な識別器を提案する。
論文 参考訳(メタデータ) (2024-07-04T18:47:42Z) - Exploring and Evaluating Hallucinations in LLM-Powered Code Generation [14.438161741833687]
LLM(Large Language Models)は、ユーザの意図から逸脱した出力を生成し、内部的不整合を示すか、事実的知識と不整合を示す。
既存の研究は主に、自然言語生成の分野における幻覚の投資に重点を置いている。
我々は,LLM生成コードのテーマ解析を行い,その内に存在する幻覚を要約し,分類する。
幻覚認識におけるLLMの性能評価のためのベンチマークであるHaluCodeを提案する。
論文 参考訳(メタデータ) (2024-04-01T07:31:45Z) - The Dawn After the Dark: An Empirical Study on Factuality Hallucination
in Large Language Models [134.6697160940223]
幻覚は、大きな言語モデルの信頼できるデプロイには大きな課題となります。
幻覚(検出)の検出方法、LLMが幻覚(ソース)をなぜ検出するのか、そしてそれを緩和するために何ができるか、という3つの重要な疑問がよく研究されるべきである。
本研究は, 幻覚検出, 発生源, 緩和の3つの側面に着目した, LLM幻覚の系統的研究である。
論文 参考訳(メタデータ) (2024-01-06T12:40:45Z) - Alleviating Hallucinations of Large Language Models through Induced
Hallucinations [67.35512483340837]
大規模言語モデル(LLM)は、不正確な情報や製造された情報を含む応答を生成するために観察されている。
幻覚を緩和するための単純なtextitInduce-then-Contrast Decoding (ICD) 戦略を提案する。
論文 参考訳(メタデータ) (2023-12-25T12:32:49Z) - AutoHall: Automated Hallucination Dataset Generation for Large Language Models [56.92068213969036]
本稿では,AutoHallと呼ばれる既存のファクトチェックデータセットに基づいて,モデル固有の幻覚データセットを自動的に構築する手法を提案する。
また,自己コントラディションに基づくゼロリソース・ブラックボックス幻覚検出手法を提案する。
論文 参考訳(メタデータ) (2023-09-30T05:20:02Z) - Siren's Song in the AI Ocean: A Survey on Hallucination in Large
Language Models [116.01843550398183]
大規模言語モデル(LLM)は、様々な下流タスクで顕著な機能を示している。
LLMは時折、ユーザ入力から分岐するコンテンツを生成し、以前生成されたコンテキストと矛盾する。
論文 参考訳(メタデータ) (2023-09-03T16:56:48Z) - Halo: Estimation and Reduction of Hallucinations in Open-Source Weak
Large Language Models [11.497989461290793]
大規模言語モデル(LLM)は自然言語処理(NLP)に革命をもたらした
パラメータが少ないオープンソースのLCMは、より大きなものに比べて深刻な幻覚に悩まされることが多い。
本稿では,より弱いオープンソース LLM の代表であるBLOOM 7B における幻覚の計測と低減に焦点をあてる。
論文 参考訳(メタデータ) (2023-08-22T20:12:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。