Visual Cue Enhancement and Dual Low-Rank Adaptation for Efficient Visual Instruction Fine-Tuning
- URL: http://arxiv.org/abs/2411.12787v2
- Date: Mon, 02 Dec 2024 07:41:38 GMT
- Title: Visual Cue Enhancement and Dual Low-Rank Adaptation for Efficient Visual Instruction Fine-Tuning
- Authors: Pengkun Jiao, Bin Zhu, Jingjing Chen, Chong-Wah Ngo, Yu-Gang Jiang,
- Abstract summary: We propose an efficient fine-tuning framework with two novel approaches: Vision Cue Enhancement (VCE) and Dual Low-Rank Adaptation (Dual-LoRA)
VCE enhances the vision projector by integrating multi-level visual cues, improving the model's ability to capture fine-grained visual features.
Dual-LoRA introduces a dual low-rank structure for instruction tuning, decoupling learning into skill and task spaces to enable precise control and efficient adaptation across diverse tasks.
- Score: 102.18178065928426
- License:
- Abstract: Parameter-efficient fine-tuning multimodal large language models (MLLMs) presents significant challenges, including reliance on high-level visual features that limit fine-grained detail comprehension, and data conflicts that arise from task complexity. To address these issues, we propose an efficient fine-tuning framework with two novel approaches: Vision Cue Enhancement (VCE) and Dual Low-Rank Adaptation (Dual-LoRA). VCE enhances the vision projector by integrating multi-level visual cues, improving the model's ability to capture fine-grained visual features. Dual-LoRA introduces a dual low-rank structure for instruction tuning, decoupling learning into skill and task spaces to enable precise control and efficient adaptation across diverse tasks. Our method simplifies implementation, enhances visual comprehension, and improves adaptability. Experiments on both downstream tasks and general benchmarks demonstrate the effectiveness of our proposed approach.
Related papers
- Transforming Vision Transformer: Towards Efficient Multi-Task Asynchronous Learning [59.001091197106085]
Multi-Task Learning (MTL) for Vision Transformer aims at enhancing the model capability by tackling multiple tasks simultaneously.
Most recent works have predominantly focused on designing Mixture-of-Experts (MoE) structures and in tegrating Low-Rank Adaptation (LoRA) to efficiently perform multi-task learning.
We propose a novel approach dubbed Efficient Multi-Task Learning (EMTAL) by transforming a pre-trained Vision Transformer into an efficient multi-task learner.
arXiv Detail & Related papers (2025-01-12T17:41:23Z) - Task Preference Optimization: Improving Multimodal Large Language Models with Vision Task Alignment [58.94611347128066]
Task Preference Optimization (TPO) is a novel method that utilizes differentiable task preferences derived from typical fine-grained visual tasks.
By leveraging rich visual labels during training, TPO significantly enhances the MLLM's multimodal capabilities and task-specific performance.
Our instantiation of this approach with VideoChat and LLaVA demonstrates an overall 14.6% improvement in multimodal performance compared to baseline models.
arXiv Detail & Related papers (2024-12-26T18:56:05Z) - Separable Mixture of Low-Rank Adaptation for Continual Visual Instruction Tuning [16.873306091966693]
Visual instruction tuning enables large language models (MLLMs) to handle a wide range of vision tasks by framing them as language-based instructions.
We identify a dual form of catastrophic forgetting in CVIT, where MLLMs forget previously learned visual understanding but also experience a decline in instruction following abilities.
We introduce the Separable Mixture of Low-Rank Adaptation (SMoLoRA) framework, which employs separable routing through two distinct modules.
This dual-routing design enables specialized adaptation in both domains, preventing forgetting while improving performance.
arXiv Detail & Related papers (2024-11-21T09:00:15Z) - EMMA: Efficient Visual Alignment in Multi-Modal LLMs [56.03417732498859]
EMMA is a lightweight cross-modality module designed to efficiently fuse visual and textual encodings.
EMMA boosts performance across multiple tasks by up to 9.3% while significantly improving robustness against hallucinations.
arXiv Detail & Related papers (2024-10-02T23:00:31Z) - CROME: Cross-Modal Adapters for Efficient Multimodal LLM [28.337072921099494]
Multimodal Large Language Models (MLLMs) demonstrate remarkable image-language capabilities.
Existing approaches often necessitate expensive language model retraining and limited adaptability.
We propose CROME, an efficient vision-language instruction tuning framework.
arXiv Detail & Related papers (2024-08-13T03:45:11Z) - Exploring the Transferability of Visual Prompting for Multimodal Large Language Models [47.162575147632396]
Transferable Visual Prompting (TVP) is a simple and effective approach to generate visual prompts that can transfer to different models and improve their performance on downstream tasks after trained on only one model.
We introduce two strategies to address the issue of cross-model feature corruption of existing visual prompting methods and enhance the transferability of the learned prompts.
arXiv Detail & Related papers (2024-04-17T09:39:07Z) - Intuition-aware Mixture-of-Rank-1-Experts for Parameter Efficient Finetuning [50.73666458313015]
Large Language Models (LLMs) have demonstrated significant potential in performing multiple tasks in multimedia applications.
MoE has been emerged as a promising solution with its sparse architecture for effective task decoupling.
Intuition-MoR1E achieves superior efficiency and 2.15% overall accuracy improvement across 14 public datasets.
arXiv Detail & Related papers (2024-04-13T12:14:58Z) - M2-CLIP: A Multimodal, Multi-task Adapting Framework for Video Action
Recognition [39.92547393649842]
We introduce a novel Multimodal, Multi-task CLIP adapting framework named name to address these challenges.
We demonstrate exceptional performance in supervised learning while maintaining strong generalization in zero-shot scenarios.
arXiv Detail & Related papers (2024-01-22T02:03:31Z) - Image Difference Captioning with Pre-training and Contrastive Learning [45.59621065755761]
The Image Difference Captioning (IDC) task aims to describe the visual differences between two similar images with natural language.
The major challenges of this task lie in two aspects: 1) fine-grained visual differences that require learning stronger vision and language association and 2) high-cost of manual annotations.
We propose a new modeling framework following the pre-training-finetuning paradigm to address these challenges.
arXiv Detail & Related papers (2022-02-09T06:14:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.