論文の概要: A Foundation Model for Unified Urban Spatio-Temporal Flow Prediction
- arxiv url: http://arxiv.org/abs/2411.12972v1
- Date: Wed, 20 Nov 2024 01:54:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-21 16:10:19.681311
- Title: A Foundation Model for Unified Urban Spatio-Temporal Flow Prediction
- Title(参考訳): 統合都市時空間流予測のための基礎モデル
- Authors: Yuan Yuan, Jingtao Ding, Chonghua Han, Depeng Jin, Yong Li,
- Abstract要約: 都市インフラの最適化と交通災害対応管理には,都市時流予測が不可欠である。
従来のアプローチは、グリッドベースのデータまたはグラフベースのデータに合わせた、別々のモデルに依存してきた。
本稿では,グリッドベースのグラフベースデータを統一した一般都市流予測モデルを提案する。
- 参考スコア(独自算出の注目度): 25.217842149162735
- License:
- Abstract: Urban spatio-temporal flow prediction, encompassing traffic flows and crowd flows, is crucial for optimizing city infrastructure and managing traffic and emergency responses. Traditional approaches have relied on separate models tailored to either grid-based data, representing cities as uniform cells, or graph-based data, modeling cities as networks of nodes and edges. In this paper, we build UniFlow, a foundational model for general urban flow prediction that unifies both grid-based and graphbased data. We first design a multi-view spatio-temporal patching mechanism to standardize different data into a consistent sequential format and then introduce a spatio-temporal transformer architecture to capture complex correlations and dynamics. To leverage shared spatio-temporal patterns across different data types and facilitate effective cross-learning, we propose SpatioTemporal Memory Retrieval Augmentation (ST-MRA). By creating structured memory modules to store shared spatio-temporal patterns, ST-MRA enhances predictions through adaptive memory retrieval. Extensive experiments demonstrate that UniFlow outperforms existing models in both grid-based and graph-based flow prediction, excelling particularly in scenarios with limited data availability, showcasing its superior performance and broad applicability. The datasets and code implementation have been released on https://github.com/YuanYuan98/UniFlow.
- Abstract(参考訳): 交通流と群集流を包含する都市時空間流予測は、都市インフラの最適化と交通・緊急対応の管理に不可欠である。
従来のアプローチは、グリッドベースのデータに合わせた別のモデルに依存しており、都市を均一なセルとして、あるいはグラフベースのデータとして、都市をノードとエッジのネットワークとしてモデル化している。
本論文では,グリッドベースデータとグラフベースデータの両方を統一する一般都市流予測の基礎モデルであるUniFlowを構築する。
まず、異なるデータを一貫したシーケンシャルなフォーマットに標準化するためのマルチビュー時空間パッチ機構を設計し、複雑な相関やダイナミクスを捉えるために時空間トランスフォーマーアーキテクチャを導入する。
異なるデータ型にまたがる共有時空間パターンを活用し、効果的なクロスラーニングを容易にするために、時空間記憶検索拡張(ST-MRA)を提案する。
共有時空間パターンを格納するために構造化メモリモジュールを作成することで、ST-MRAは適応メモリ検索を通じて予測を強化する。
大規模な実験では、UniFlowはグリッドベースとグラフベースのフロー予測の両方で既存のモデルよりも優れており、特にデータ可用性に制限のあるシナリオでは優れており、優れたパフォーマンスと幅広い適用性を示している。
データセットとコードの実装はhttps://github.com/YuanYuan98/UniFlowでリリースされた。
関連論文リスト
- SFADNet: Spatio-temporal Fused Graph based on Attention Decoupling Network for Traffic Prediction [4.868638426254428]
本稿では,空間的特徴量に基づいてトラフィックフローを複数のトラフィックパターンに分類する,革新的なトラフィックフロー予測ネットワークであるSFADNetを提案する。
各パターンに対して、残差グラフ畳み込みモジュールと時系列モジュールを用いて、相互アテンション機構に基づく独立適応時間融合グラフを構築する。
大規模な実験結果によると、SFADNetは大規模な4スケールのデータセットで現在の最先端のベースラインを上回っている。
論文 参考訳(メタデータ) (2025-01-07T09:09:50Z) - PreMixer: MLP-Based Pre-training Enhanced MLP-Mixers for Large-scale Traffic Forecasting [30.055634767677823]
都市コンピューティングでは,交通ネットワークからの時系列データの正確かつ迅速な予測が重要である。
現在の研究制限は、モデル固有の非効率性と、モデル複雑さによる大規模トラフィックアプリケーションに対する不適合性のためである。
本稿では,このギャップを埋めるための新しいフレームワークPreMixerを提案する。MLP(Multi-Layer Perceptrons)の原理に基づく予測モデルと事前学習機構を特徴とする。
我々のフレームワークは,大規模トラフィックデータセットの広範な実験により検証され,高い計算効率を維持しながら,同等の最先端性能を実現している。
論文 参考訳(メタデータ) (2024-12-18T08:35:40Z) - Federated Learning for Traffic Flow Prediction with Synthetic Data Augmentation [10.751702067716804]
この研究はFedTPSと呼ばれるFLフレームワークを導入し、FLを介して軌道生成モデルをトレーニングすることで、各クライアントのローカルデータセットを増大させる合成データを生成する。
提案手法は,様々なFL手法と交通流予測モデルを用いて,大規模現実のライドシェアリングデータセットを用いて評価する。
論文 参考訳(メタデータ) (2024-12-11T15:25:38Z) - Tackling Data Heterogeneity in Federated Time Series Forecasting [61.021413959988216]
時系列予測は、エネルギー消費予測、病気の伝染モニタリング、天気予報など、様々な実世界の応用において重要な役割を果たす。
既存のほとんどのメソッドは、分散デバイスから中央クラウドサーバに大量のデータを収集する、集中的なトレーニングパラダイムに依存しています。
本稿では,情報合成データを補助的知識キャリアとして生成することにより,データの均一性に対処する新しいフレームワークであるFed-TRENDを提案する。
論文 参考訳(メタデータ) (2024-11-24T04:56:45Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
都市フロー予測は、バス、タクシー、ライド駆動モデルといった交通サービスのスループットを見積もる、微妙な時間的モデリングである。
最近の予測解は、物理学誘導機械学習(PGML)の概念による改善をもたらす。
我々は、PN(atized Physics-guided Network)を開発し、P-GASR(Physical-guided Active Sample Reweighting)を提案する。
論文 参考訳(メタデータ) (2024-07-18T15:44:23Z) - Rethinking Urban Mobility Prediction: A Super-Multivariate Time Series
Forecasting Approach [71.67506068703314]
長期の都市移動予測は、都市施設やサービスの効果的管理において重要な役割を担っている。
伝統的に、都市移動データはビデオとして構成され、経度と緯度を基本的なピクセルとして扱う。
本研究では,都市におけるモビリティ予測の新たな視点について紹介する。
都市移動データを従来のビデオデータとして単純化するのではなく、複雑な時系列と見なす。
論文 参考訳(メタデータ) (2023-12-04T07:39:05Z) - Bayesian Structure Learning with Generative Flow Networks [85.84396514570373]
ベイズ構造学習では、データから有向非巡回グラフ(DAG)上の分布を推定することに興味がある。
近年,ジェネレーティブ・フロー・ネットワーク(GFlowNets)と呼ばれる確率モデルのクラスが,ジェネレーティブ・モデリングの一般的なフレームワークとして紹介されている。
DAG-GFlowNetと呼ばれる本手法は,DAGよりも後方の正確な近似を提供する。
論文 参考訳(メタデータ) (2022-02-28T15:53:10Z) - Traffic Flow Forecasting with Maintenance Downtime via Multi-Channel
Attention-Based Spatio-Temporal Graph Convolutional Networks [4.318655493189584]
建設工事の影響下での交通速度予測モデルを提案する。
このモデルは、強力なアテンションベースの時間グラフ畳み込みアーキテクチャに基づいているが、様々なチャネルを利用して異なる情報ソースを統合する。
このモデルは、2つのベンチマークデータセットと、北バージニアの散らかった道路の角で収集した新しいデータセットで評価されている。
論文 参考訳(メタデータ) (2021-10-04T16:07:37Z) - Predicting traffic signals on transportation networks using
spatio-temporal correlations on graphs [56.48498624951417]
本稿では,複数の熱拡散カーネルをデータ駆動予測モデルにマージして交通信号を予測する交通伝搬モデルを提案する。
予測誤差を最小限に抑えるためにベイズ推定を用いてモデルパラメータを最適化し,2つの手法の混合率を決定する。
提案モデルでは,計算労力の少ない最先端のディープニューラルネットワークに匹敵する予測精度を示す。
論文 参考訳(メタデータ) (2021-04-27T18:17:42Z) - Unified Spatio-Temporal Modeling for Traffic Forecasting using Graph
Neural Network [2.7088996845250897]
このような分解加群との複素時間的関係を抽出するのは時間的効果が低いと我々は主張する。
空間的および時間的アグリゲーションを行う交通予測のための統一S週間グラフ畳み込み(USTGCN)を提案する。
我々のモデルUSTGCNは3つの人気のあるベンチマークデータセットで最先端のパフォーマンスを上回ります。
論文 参考訳(メタデータ) (2021-04-26T12:33:17Z) - Radflow: A Recurrent, Aggregated, and Decomposable Model for Networks of
Time Series [77.47313102926017]
Radflowは、お互いに影響を与える時系列ネットワークの新しいモデルである。
それは3つの重要なアイデアを具現化します:時間に依存するノード埋め込み、マルチヘッドの注意を持つ隣接するノードからの影響の流れの集約、および時系列の多層分解を得るための繰り返しニューラルネットワーク。
radflowは異なる傾向や季節パターンを学習でき、欠落したノードやエッジに対して頑健であり、ネットワークの隣人間の時間パターンの相関は影響強度を反映している。
論文 参考訳(メタデータ) (2021-02-15T00:57:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。