Towards Unbiased and Robust Spatio-Temporal Scene Graph Generation and Anticipation
- URL: http://arxiv.org/abs/2411.13059v1
- Date: Wed, 20 Nov 2024 06:15:28 GMT
- Title: Towards Unbiased and Robust Spatio-Temporal Scene Graph Generation and Anticipation
- Authors: Rohith Peddi, Saurabh, Ayush Abhay Shrivastava, Parag Singla, Vibhav Gogate,
- Abstract summary: Impar, a novel training framework that leverages curriculum learning and loss masking to mitigate bias generation and anticipation modelling.
We introduce two new tasks, Robust Spatio-Temporal Scene Graph Generation and Robust Scene Graph Anticipation, designed to evaluate the robustness of STSG models against distribution shifts.
- Score: 10.678727237318503
- License:
- Abstract: Spatio-Temporal Scene Graphs (STSGs) provide a concise and expressive representation of dynamic scenes by modelling objects and their evolving relationships over time. However, real-world visual relationships often exhibit a long-tailed distribution, causing existing methods for tasks like Video Scene Graph Generation (VidSGG) and Scene Graph Anticipation (SGA) to produce biased scene graphs. To this end, we propose ImparTail, a novel training framework that leverages curriculum learning and loss masking to mitigate bias in the generation and anticipation of spatio-temporal scene graphs. Our approach gradually decreases the dominance of the head relationship classes during training and focuses more on tail classes, leading to more balanced training. Furthermore, we introduce two new tasks, Robust Spatio-Temporal Scene Graph Generation and Robust Scene Graph Anticipation, designed to evaluate the robustness of STSG models against distribution shifts. Extensive experiments on the Action Genome dataset demonstrate that our framework significantly enhances the unbiased performance and robustness of STSG models compared to existing methods.
Related papers
- Joint Generative Modeling of Scene Graphs and Images via Diffusion
Models [37.788957749123725]
We present a novel generative task: joint scene graph - image generation.
We introduce a novel diffusion model, DiffuseSG, that jointly models the adjacency matrix along with heterogeneous node and edge attributes.
With a graph transformer being the denoiser, DiffuseSG successively denoises the scene graph representation in a continuous space and discretizes the final representation to generate the clean scene graph.
arXiv Detail & Related papers (2024-01-02T10:10:29Z) - Local-Global Information Interaction Debiasing for Dynamic Scene Graph
Generation [51.92419880088668]
We propose a novel DynSGG model based on multi-task learning, DynSGG-MTL, which introduces the local interaction information and global human-action interaction information.
Long-temporal human actions supervise the model to generate multiple scene graphs that conform to the global constraints and avoid the model being unable to learn the tail predicates.
arXiv Detail & Related papers (2023-08-10T01:24:25Z) - Spatial-Temporal Graph Learning with Adversarial Contrastive Adaptation [19.419836274690816]
We propose a new spatial-temporal graph learning model (GraphST) for enabling effective self-supervised learning.
Our proposed model is an adversarial contrastive learning paradigm that automates the distillation of crucial multi-view self-supervised information.
We demonstrate the superiority of our proposed GraphST method in various spatial-temporal prediction tasks on real-life datasets.
arXiv Detail & Related papers (2023-06-19T03:09:35Z) - Unbiased Scene Graph Generation in Videos [36.889659781604564]
We introduce TEMPURA: TEmporal consistency and Memory-guided UnceRtainty Attenuation for unbiased dynamic SGG.
TEMPURA employs object-level temporal consistencies via transformer sequence modeling, learns to synthesize unbiased relationship representations.
Our method achieves significant (up to 10% in some cases) performance gain over existing methods.
arXiv Detail & Related papers (2023-04-03T06:10:06Z) - EasyDGL: Encode, Train and Interpret for Continuous-time Dynamic Graph Learning [92.71579608528907]
This paper aims to design an easy-to-use pipeline (termed as EasyDGL) composed of three key modules with both strong ability fitting and interpretability.
EasyDGL can effectively quantify the predictive power of frequency content that a model learn from the evolving graph data.
arXiv Detail & Related papers (2023-03-22T06:35:08Z) - Scene Graph Modification as Incremental Structure Expanding [61.84291817776118]
We focus on scene graph modification (SGM), where the system is required to learn how to update an existing scene graph based on a natural language query.
We frame SGM as a graph expansion task by introducing the incremental structure expanding (ISE)
We construct a challenging dataset that contains more complicated queries and larger scene graphs than existing datasets.
arXiv Detail & Related papers (2022-09-15T16:26:14Z) - Towards Unsupervised Deep Graph Structure Learning [67.58720734177325]
We propose an unsupervised graph structure learning paradigm, where the learned graph topology is optimized by data itself without any external guidance.
Specifically, we generate a learning target from the original data as an "anchor graph", and use a contrastive loss to maximize the agreement between the anchor graph and the learned graph.
arXiv Detail & Related papers (2022-01-17T11:57:29Z) - Exploiting Long-Term Dependencies for Generating Dynamic Scene Graphs [15.614710220461353]
We show that capturing long-term dependencies is the key to effective generation of dynamic scene graphs.
Experimental results demonstrate that our Dynamic Scene Graph Detection Transformer (DSG-DETR) outperforms state-of-the-art methods.
arXiv Detail & Related papers (2021-12-18T03:02:11Z) - Visual Distant Supervision for Scene Graph Generation [66.10579690929623]
Scene graph models usually require supervised learning on large quantities of labeled data with intensive human annotation.
We propose visual distant supervision, a novel paradigm of visual relation learning, which can train scene graph models without any human-labeled data.
Comprehensive experimental results show that our distantly supervised model outperforms strong weakly supervised and semi-supervised baselines.
arXiv Detail & Related papers (2021-03-29T06:35:24Z) - Iterative Graph Self-Distillation [161.04351580382078]
We propose a novel unsupervised graph learning paradigm called Iterative Graph Self-Distillation (IGSD)
IGSD iteratively performs the teacher-student distillation with graph augmentations.
We show that we achieve significant and consistent performance gain on various graph datasets in both unsupervised and semi-supervised settings.
arXiv Detail & Related papers (2020-10-23T18:37:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.