Globally Correlation-Aware Hard Negative Generation
- URL: http://arxiv.org/abs/2411.13145v1
- Date: Wed, 20 Nov 2024 09:19:12 GMT
- Title: Globally Correlation-Aware Hard Negative Generation
- Authors: Wenjie Peng, Hongxiang Huang, Tianshui Chen, Quhui Ke, Gang Dai, Shuangping Huang,
- Abstract summary: We propose a Globally Correlation-Aware Hard Negative Generation (GCA-HNG) framework.
GCA-HNG first learns sample correlations from a global perspective and exploits these correlations to guide generating hardness-adaptive and diverse negatives.
Experiment results demonstrate that the proposed GCA-HNG is superior to related methods on four image retrieval benchmark datasets.
- Score: 10.01484541395438
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Hard negative generation aims to generate informative negative samples that help to determine the decision boundaries and thus facilitate advancing deep metric learning. Current works select pair/triplet samples, learn their correlations, and fuse them to generate hard negatives. However, these works merely consider the local correlations of selected samples, ignoring global sample correlations that would provide more significant information to generate more informative negatives. In this work, we propose a Globally Correlation-Aware Hard Negative Generation (GCA-HNG) framework, which first learns sample correlations from a global perspective and exploits these correlations to guide generating hardness-adaptive and diverse negatives. Specifically, this approach begins by constructing a structured graph to model sample correlations, where each node represents a specific sample and each edge represents the correlations between corresponding samples. Then, we introduce an iterative graph message propagation to propagate the messages of node and edge through the whole graph and thus learn the sample correlations globally. Finally, with the guidance of the learned global correlations, we propose a channel-adaptive manner to combine an anchor and multiple negatives for HNG. Compared to current methods, GCA-HNG allows perceiving sample correlations with numerous negatives from a global and comprehensive perspective and generates the negatives with better hardness and diversity. Extensive experiment results demonstrate that the proposed GCA-HNG is superior to related methods on four image retrieval benchmark datasets. Codes and trained models are available at \url{https://github.com/PWenJay/GCA-HNG}.
Related papers
- Diversified and Adaptive Negative Sampling on Knowledge Graphs [11.139278325106272]
We propose a generative adversarial approach called Diversified and Adaptive Negative Sampling DANS on knowledge graphs.
DANS is equipped with a two-way generator that generates more diverse negative triplets through two pathways, and an adaptive mechanism that produces more fine-grained examples.
On the one hand, the two-way generator increase the overall informativeness with more diverse negative examples; on the other hand, the adaptive mechanism increases the individual sample-wise informativeness with more fine-grained sampling.
arXiv Detail & Related papers (2024-10-10T03:53:49Z) - Graph Out-of-Distribution Generalization via Causal Intervention [69.70137479660113]
We introduce a conceptually simple yet principled approach for training robust graph neural networks (GNNs) under node-level distribution shifts.
Our method resorts to a new learning objective derived from causal inference that coordinates an environment estimator and a mixture-of-expert GNN predictor.
Our model can effectively enhance generalization with various types of distribution shifts and yield up to 27.4% accuracy improvement over state-of-the-arts on graph OOD generalization benchmarks.
arXiv Detail & Related papers (2024-02-18T07:49:22Z) - GUESR: A Global Unsupervised Data-Enhancement with Bucket-Cluster
Sampling for Sequential Recommendation [58.6450834556133]
We propose graph contrastive learning to enhance item representations with complex associations from the global view.
We extend the CapsNet module with the elaborately introduced target-attention mechanism to derive users' dynamic preferences.
Our proposed GUESR could not only achieve significant improvements but also could be regarded as a general enhancement strategy.
arXiv Detail & Related papers (2023-03-01T05:46:36Z) - Enhancing Graph Contrastive Learning with Node Similarity [4.60032347615771]
Graph contrastive learning (GCL) is a representative framework for self-supervised learning.
GCL learns node representations by contrasting semantically similar nodes (positive samples) and dissimilar nodes (negative samples) with anchor nodes.
We propose an enhanced objective that contains all positive samples and no false-negative samples.
arXiv Detail & Related papers (2022-08-13T22:49:20Z) - Generating Counterfactual Hard Negative Samples for Graph Contrastive
Learning [22.200011046576716]
Graph contrastive learning is a powerful tool for unsupervised graph representation learning.
Recent works usually sample negative samples from the same training batch with the positive samples, or from an external irrelevant graph.
We propose a novel method to utilize textbfCounterfactual mechanism to generate artificial hard negative samples for textbfContrastive learning.
arXiv Detail & Related papers (2022-07-01T02:19:59Z) - Language Model-driven Negative Sampling [8.299192665823542]
Knowledge Graph Embeddings (KGEs) encode the entities and relations of a knowledge graph (KG) into a vector space with a purpose of representation learning and reasoning for an ultimate downstream task (i.e., link prediction, question answering)
Since KGEs follow closed-world assumption and assume all the present facts in KGs to be positive (correct), they also require negative samples as a counterpart for learning process for truthfulness test of existing triples.
We propose an approach for generating negative sampling considering the existing rich textual knowledge in KGs.
arXiv Detail & Related papers (2022-03-09T13:27:47Z) - Prototypical Graph Contrastive Learning [141.30842113683775]
We propose a Prototypical Graph Contrastive Learning (PGCL) approach to mitigate the critical sampling bias issue.
Specifically, PGCL models the underlying semantic structure of the graph data via clustering semantically similar graphs into the same group, and simultaneously encourages the clustering consistency for different augmentations of the same graph.
For a query, PGCL further reweights its negative samples based on the distance between their prototypes (cluster centroids) and the query prototype.
arXiv Detail & Related papers (2021-06-17T16:45:31Z) - Relation-aware Graph Attention Model With Adaptive Self-adversarial
Training [29.240686573485718]
This paper describes an end-to-end solution for the relationship prediction task in heterogeneous, multi-relational graphs.
We particularly address two building blocks in the pipeline, namely heterogeneous graph representation learning and negative sampling.
We introduce a parameter-free negative sampling technique -- adaptive self-adversarial (ASA) negative sampling.
arXiv Detail & Related papers (2021-02-14T16:11:56Z) - GANs with Variational Entropy Regularizers: Applications in Mitigating
the Mode-Collapse Issue [95.23775347605923]
Building on the success of deep learning, Generative Adversarial Networks (GANs) provide a modern approach to learn a probability distribution from observed samples.
GANs often suffer from the mode collapse issue where the generator fails to capture all existing modes of the input distribution.
We take an information-theoretic approach and maximize a variational lower bound on the entropy of the generated samples to increase their diversity.
arXiv Detail & Related papers (2020-09-24T19:34:37Z) - Understanding Negative Sampling in Graph Representation Learning [87.35038268508414]
We show that negative sampling is as important as positive sampling in determining the optimization objective and the resulted variance.
We propose Metropolis-Hastings (MCNS) to approximate the positive distribution with self-contrast approximation and accelerate negative sampling by Metropolis-Hastings.
We evaluate our method on 5 datasets that cover extensive downstream graph learning tasks, including link prediction, node classification and personalized recommendation.
arXiv Detail & Related papers (2020-05-20T06:25:21Z) - Reinforced Negative Sampling over Knowledge Graph for Recommendation [106.07209348727564]
We develop a new negative sampling model, Knowledge Graph Policy Network (kgPolicy), which works as a reinforcement learning agent to explore high-quality negatives.
kgPolicy navigates from the target positive interaction, adaptively receives knowledge-aware negative signals, and ultimately yields a potential negative item to train the recommender.
arXiv Detail & Related papers (2020-03-12T12:44:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.