論文の概要: Towards RAW Object Detection in Diverse Conditions
- arxiv url: http://arxiv.org/abs/2411.15678v1
- Date: Sun, 24 Nov 2024 01:23:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-26 14:20:59.507076
- Title: Towards RAW Object Detection in Diverse Conditions
- Title(参考訳): 様々な条件下でのRAW物体検出に向けて
- Authors: Zhong-Yu Li, Xin Jin, Boyuan Sun, Chun-Le Guo, Ming-Ming Cheng,
- Abstract要約: 62のカテゴリにまたがる135,601のアノテーション付きインスタンスを備えた7,785の高分解能実RAW画像を提供するAODRawデータセットを紹介した。
sRGB と RAW の領域ギャップにより RAW オブジェクト検出の可能性は sRGB と RAW との事前学習によって制限されることがわかった。
我々は,RAW事前学習を支援するために,SRGBドメインで事前学習した市販のモデルから知識を抽出する。
- 参考スコア(独自算出の注目度): 65.30190654593842
- License:
- Abstract: Existing object detection methods often consider sRGB input, which was compressed from RAW data using ISP originally designed for visualization. However, such compression might lose crucial information for detection, especially under complex light and weather conditions. We introduce the AODRaw dataset, which offers 7,785 high-resolution real RAW images with 135,601 annotated instances spanning 62 categories, capturing a broad range of indoor and outdoor scenes under 9 distinct light and weather conditions. Based on AODRaw that supports RAW and sRGB object detection, we provide a comprehensive benchmark for evaluating current detection methods. We find that sRGB pre-training constrains the potential of RAW object detection due to the domain gap between sRGB and RAW, prompting us to directly pre-train on the RAW domain. However, it is harder for RAW pre-training to learn rich representations than sRGB pre-training due to the camera noise. To assist RAW pre-training, we distill the knowledge from an off-the-shelf model pre-trained on the sRGB domain. As a result, we achieve substantial improvements under diverse and adverse conditions without relying on extra pre-processing modules. Code and dataset are available at https://github.com/lzyhha/AODRaw.
- Abstract(参考訳): 既存のオブジェクト検出手法は、元来視覚化用に設計されたISPを用いてRAWデータから圧縮されたsRGB入力をよく考慮する。
しかし、このような圧縮は、特に複雑な光と気象条件下では、検出にとって重要な情報を失う可能性がある。
我々はAODRawデータセットを導入し、62のカテゴリにまたがる135,601の注釈付きインスタンスで7,785個の高解像度のRAW画像を提供する。
RAWおよびsRGBオブジェクト検出をサポートするAODRawに基づいて、現在の検出方法を評価するための総合的なベンチマークを提供する。
sRGB と RAW のドメインギャップによる RAW オブジェクト検出の可能性を制約し,RAW ドメイン上で直接事前トレーニングを行う。
しかし、RAW事前学習は、カメラノイズのため、sRGB事前学習よりもリッチな表現を学習することが困難である。
RAW事前学習を支援するため,SRGBドメイン上で事前学習した市販のモデルから知識を抽出する。
その結果,余分な前処理モジュールに頼ることなく,多様かつ有害な条件下での大幅な改善を実現した。
コードとデータセットはhttps://github.com/lzyhha/AODRaw.comで公開されている。
関連論文リスト
- RAW-Diffusion: RGB-Guided Diffusion Models for High-Fidelity RAW Image Generation [4.625376287612609]
RGB画像でガイドされたRAW画像を生成するための新しい拡散法を提案する。
このアプローチは高忠実度RAW画像を生成し、カメラ固有のRAWデータセットの作成を可能にする。
提案手法を拡張してBDD100K-RAWとCityscapes-RAWデータセットを作成し,RAW画像におけるオブジェクト検出の有効性を明らかにする。
論文 参考訳(メタデータ) (2024-11-20T09:40:12Z) - Unveiling Hidden Details: A RAW Data-Enhanced Paradigm for Real-World Super-Resolution [56.98910228239627]
リアル・ワールド・イメージ・スーパーレゾリューション(Real SR)は、低解像度(LR)画像から高忠実でディテールに富んだ高解像度(HR)画像を生成することを目的としている。
既存のReal SRメソッドは主にLR RGBドメインから詳細を生成することに重点を置いており、しばしば細部における豊かさや忠実さの欠如につながっている。
RAWデータに隠された詳細を用いて既存のRGBのみの手法を補完し、優れた出力を得る。
論文 参考訳(メタデータ) (2024-11-16T13:29:50Z) - Toward Efficient Deep Blind RAW Image Restoration [56.41827271721955]
我々は、深部ブラインドRAW復元モデルをトレーニングするための、新しい現実的な劣化パイプラインを設計する。
私たちのパイプラインでは、リアルなセンサーノイズ、動きのぼかし、カメラの揺れ、その他の一般的な劣化について検討しています。
パイプラインと複数のセンサーのデータで訓練されたモデルは、ノイズとぼやけをうまく低減し、異なるカメラから撮影されたRAW画像の細部を復元する。
論文 参考訳(メタデータ) (2024-09-26T18:34:37Z) - Raw Instinct: Trust Your Classifiers and Skip the Conversion [12.323236593352698]
十分高度な分類器は、RGBと比較してRAW入力に対して等価な結果が得られることを示す。
さらに、RAW画像データからRAW画像の分類結果までの計算時間は、RGBよりも最大8.46倍高速であることを示す。
論文 参考訳(メタデータ) (2024-03-21T14:45:41Z) - BSRAW: Improving Blind RAW Image Super-Resolution [63.408484584265985]
RAW領域におけるブラインド画像の超解像化に取り組む。
生センサデータを用いたトレーニングモデルに特化した,現実的な劣化パイプラインを設計する。
私たちのパイプラインでトレーニングしたBSRAWモデルは、リアルタイムRAW画像をスケールアップし、品質を向上させることができます。
論文 参考訳(メタデータ) (2023-12-24T14:17:28Z) - Self-Supervised Reversed Image Signal Processing via Reference-Guided
Dynamic Parameter Selection [1.1602089225841632]
メタデータとペア画像を必要としない自己教師付き逆ISP方式を提案する。
提案手法は,RGB画像を参照RAW画像と同じセンサで同一環境で撮影されたRAWライクな画像に変換する。
提案手法は,他の最先端教師付き手法に匹敵する精度で,様々な逆ISPを学習可能であることを示す。
論文 参考訳(メタデータ) (2023-03-24T11:12:05Z) - Efficient Visual Computing with Camera RAW Snapshots [41.9863557302409]
従来のカメラはセンサ上の画像光を捕捉し、画像信号プロセッサ(ISP)を用いてRGB画像に変換する。
RAW画像にはキャプチャされた全ての情報が含まれているため、ISPを用いたRAWからRGBへの変換はビジュアルコンピューティングには必要ないと論じることができる。
RAW画像を用いた高レベルセマンティック理解と低レベル圧縮を実現するための新しい$rho$-Visionフレームワークを提案する。
論文 参考訳(メタデータ) (2022-12-15T12:54:21Z) - Towards Low Light Enhancement with RAW Images [101.35754364753409]
我々は、低光強度でRAW画像を使用することの優位性について、最初のベンチマークを行う。
本研究では,RAW画像の特性を計測可能な因子に分解するFEM(Facterized Enhancement Model)を新たに開発した。
実アプリケーションにおけるRAW画像の利点と利用不可のトレードオフを生かしたREENet(RAW-guiding Exposure Enhancement Network)を開発した。
論文 参考訳(メタデータ) (2021-12-28T07:27:51Z) - Learning RAW-to-sRGB Mappings with Inaccurately Aligned Supervision [76.41657124981549]
本稿では,画像アライメントとRAW-to-sRGBマッピングのための共同学習モデルを提案する。
実験の結果,本手法はZRRおよびSR-RAWデータセットの最先端に対して良好に動作することがわかった。
論文 参考訳(メタデータ) (2021-08-18T12:41:36Z) - Invertible Image Signal Processing [42.109752151834456]
InvISP(Invertible Image Signal Processing)パイプラインにより、視覚的に魅力的なsRGBイメージをレンダリングできます。
メモリのオーバーヘッドなしにsrgb画像から生データを合成する代わりに、リアルな生データを再構築できる。
論文 参考訳(メタデータ) (2021-03-28T06:30:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。