Making Quantum Collision Models Exact
- URL: http://arxiv.org/abs/2411.13166v2
- Date: Thu, 28 Nov 2024 17:56:41 GMT
- Title: Making Quantum Collision Models Exact
- Authors: Thibaut Lacroix, Dario Cilluffo, Susana F. Huelga, Martin B. Plenio,
- Abstract summary: Quantum collision describe open quantum systems through repeated interactions with a coarse-grained environment.
No complete error bounds on the simulation of system observables have been established.
We show that Markovian and non-Markovian collision models can be recovered analytically from chain mapping techniques.
- Score: 0.7499722271664147
- License:
- Abstract: Quantum collision describe open quantum systems through repeated interactions with a coarse-grained environment. However, a complete certification of these models is lacking, as no complete error bounds on the simulation of system observables have been established. Here, we show that Markovian and non-Markovian collision models can be recovered analytically from chain mapping techniques starting from a general microscopic Hamiltonian. This derivation reveals a previously unidentified source of error -- induced by an unfaithful sampling of the environment -- in dynamics obtained with collision models that can become dominant for small but finite time-steps. With the complete characterization of this error, all collision models errors are now identified and quantified, which enables the promotion of collision models to the class of numerically exact methods. To confirm the predictions of our equivalence results, we implemented a non-Markovian collision model of the Spin Boson Model, and identified, as predicted, a regime in which the collision model is fundamentally inaccurate.
Related papers
- Post-Markovian master equation à la microscopic collisional model [0.0]
We derive a positive post-Markovian master equation (PMME) from a microscopic Markovian collisional model framework.
We also investigate thermalization using the derived equation, revealing that the post-Markovian dynamics accelerates the thermalization process.
arXiv Detail & Related papers (2024-11-25T19:18:10Z) - Embedded Nonlocal Operator Regression (ENOR): Quantifying model error in learning nonlocal operators [8.585650361148558]
We propose a new framework to learn a nonlocal homogenized surrogate model and its structural model error.
This framework provides discrepancy-adaptive uncertainty quantification for homogenized material response predictions in long-term simulations.
arXiv Detail & Related papers (2024-10-27T04:17:27Z) - Towards Theoretical Understandings of Self-Consuming Generative Models [56.84592466204185]
This paper tackles the emerging challenge of training generative models within a self-consuming loop.
We construct a theoretical framework to rigorously evaluate how this training procedure impacts the data distributions learned by future models.
We present results for kernel density estimation, delivering nuanced insights such as the impact of mixed data training on error propagation.
arXiv Detail & Related papers (2024-02-19T02:08:09Z) - Sampling-based Uncertainty Estimation for an Instance Segmentation
Network [8.772859218496244]
Uncertainty in predictions of machine learning (ML) models is receiving increasing attention.
One uncertainty modeling technique used for this purpose is Monte-Carlo (MC)-Dropout, where repeated predictions are generated for a single input.
This article uses Bayesian Gaussian Mixture (BGM) to solve this problem.
In addition, we investigate different values for the dropout rate and other techniques, such as focal loss and calibration, which we integrate into the Mask-RCNN model to obtain the most accurate uncertainty approximation of each instance.
arXiv Detail & Related papers (2023-05-24T10:12:50Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Regularized Vector Quantization for Tokenized Image Synthesis [126.96880843754066]
Quantizing images into discrete representations has been a fundamental problem in unified generative modeling.
deterministic quantization suffers from severe codebook collapse and misalignment with inference stage while quantization suffers from low codebook utilization and reconstruction objective.
This paper presents a regularized vector quantization framework that allows to mitigate perturbed above issues effectively by applying regularization from two perspectives.
arXiv Detail & Related papers (2023-03-11T15:20:54Z) - Closed-form discovery of structural errors in models of chaotic systems
by integrating Bayesian sparse regression and data assimilation [0.0]
We introduce a framework named MEDIDA: Model Error Discovery with Interpretability and Data Assimilation.
In MEDIDA, first the model error is estimated from differences between the observed states and model-predicted states.
If observations are noisy, a data assimilation technique such as ensemble Kalman filter (EnKF) is first used to provide a noise-free analysis state of the system.
Finally, an equation-discovery technique, such as the relevance vector machine (RVM), a sparsity-promoting Bayesian method, is used to identify an interpretable, parsimonious, closed
arXiv Detail & Related papers (2021-10-01T17:19:28Z) - Quantifying Model Predictive Uncertainty with Perturbation Theory [21.591460685054546]
We propose a framework for predictive uncertainty quantification of a neural network.
We use perturbation theory from quantum physics to formulate a moment decomposition problem.
Our approach provides fast model predictive uncertainty estimates with much greater precision and calibration.
arXiv Detail & Related papers (2021-09-22T17:55:09Z) - Estimation of Bivariate Structural Causal Models by Variational Gaussian
Process Regression Under Likelihoods Parametrised by Normalising Flows [74.85071867225533]
Causal mechanisms can be described by structural causal models.
One major drawback of state-of-the-art artificial intelligence is its lack of explainability.
arXiv Detail & Related papers (2021-09-06T14:52:58Z) - Anomaly Detection of Time Series with Smoothness-Inducing Sequential
Variational Auto-Encoder [59.69303945834122]
We present a Smoothness-Inducing Sequential Variational Auto-Encoder (SISVAE) model for robust estimation and anomaly detection of time series.
Our model parameterizes mean and variance for each time-stamp with flexible neural networks.
We show the effectiveness of our model on both synthetic datasets and public real-world benchmarks.
arXiv Detail & Related papers (2021-02-02T06:15:15Z) - Good Classifiers are Abundant in the Interpolating Regime [64.72044662855612]
We develop a methodology to compute precisely the full distribution of test errors among interpolating classifiers.
We find that test errors tend to concentrate around a small typical value $varepsilon*$, which deviates substantially from the test error of worst-case interpolating model.
Our results show that the usual style of analysis in statistical learning theory may not be fine-grained enough to capture the good generalization performance observed in practice.
arXiv Detail & Related papers (2020-06-22T21:12:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.