Post-Markovian master equation à la microscopic collisional model
- URL: http://arxiv.org/abs/2411.16878v1
- Date: Mon, 25 Nov 2024 19:18:10 GMT
- Title: Post-Markovian master equation à la microscopic collisional model
- Authors: Tanmay Saha, Sahil, K. P. Athulya, Sibasish Ghosh,
- Abstract summary: We derive a positive post-Markovian master equation (PMME) from a microscopic Markovian collisional model framework.
We also investigate thermalization using the derived equation, revealing that the post-Markovian dynamics accelerates the thermalization process.
- Score: 0.0
- License:
- Abstract: We derive a completely positive post-Markovian master equation (PMME) from a microscopic Markovian collisional model framework, incorporating bath memory effects via a probabilistic single-shot measurement approach. This phenomenological master equation is both analytically solvable and numerically tractable. Depending on the choice of the memory kernel function, the PMME can be reduced to the exact Nakajima-Zwanzig equation or the Markovian master equation, enabling a broad spectrum of dynamical behaviors. We also investigate thermalization using the derived equation, revealing that the post-Markovian dynamics accelerates the thermalization process, exceeding rates observed within the Markovian framework. Our approach solidifies the assertion that "collisional models can simulate any open quantum dynamics", underscoring the versatility of the models in realizing open quantum systems.
Related papers
- Stochastic Schr\"odinger equation approach to real-time dynamics of
Anderson-Holstein impurities: an open quantum system perspective [3.105656247358225]
We develop a framework to simulate dynamics of Anderson-Holstein impurities coupled to a continuous fermionic bath.
We show that such an SSE treatment provides a middle ground between numerically expansive microscopic simulations and master equations.
arXiv Detail & Related papers (2023-09-16T06:03:54Z) - Dynamically Emergent Quantum Thermodynamics: Non-Markovian Otto Cycle [49.1574468325115]
We revisit the thermodynamic behavior of the quantum Otto cycle with a focus on memory effects and strong system-bath couplings.
Our investigation is based on an exact treatment of non-Markovianity by means of an exact quantum master equation.
arXiv Detail & Related papers (2023-08-18T11:00:32Z) - Differentiating Metropolis-Hastings to Optimize Intractable Densities [51.16801956665228]
We develop an algorithm for automatic differentiation of Metropolis-Hastings samplers.
We apply gradient-based optimization to objectives expressed as expectations over intractable target densities.
arXiv Detail & Related papers (2023-06-13T17:56:02Z) - A quantum-classical decomposition of Gaussian quantum environments: a
stochastic pseudomode model [0.8258451067861933]
We show that the effect of a Bosonic environment linearly coupled to a quantum system can be simulated by a Gaussian Lindblad master equation.
For a subset of rational spectral densities, all parameters are explicitly specified without the need of any fitting procedure.
arXiv Detail & Related papers (2023-01-18T14:17:17Z) - An open scattering model in polymerized quantum mechanics [0.0]
We derive a quantum master equation in the context of a polymerized open quantum mechanical system for the scattering of a Brownian particle.
We discuss some physical properties of the master equation associated to effective equations for the expectation values of the fundamental operators.
arXiv Detail & Related papers (2022-07-18T16:52:18Z) - Counting Phases and Faces Using Bayesian Thermodynamic Integration [77.34726150561087]
We introduce a new approach to reconstruction of the thermodynamic functions and phase boundaries in two-parametric statistical mechanics systems.
We use the proposed approach to accurately reconstruct the partition functions and phase diagrams of the Ising model and the exactly solvable non-equilibrium TASEP.
arXiv Detail & Related papers (2022-05-18T17:11:23Z) - Pseudomode description of general open quantum system dynamics:
non-perturbative master equation for the spin-boson model [0.0]
We outline a non-perturbative approach for simulating the behavior of open quantum systems interacting with a bosonic environment.
Our framework can be used as a powerful and versatile tool for analyzing non-Markovian open system dynamics.
arXiv Detail & Related papers (2021-08-12T13:49:22Z) - Quantum Markov Chain Monte Carlo with Digital Dissipative Dynamics on
Quantum Computers [52.77024349608834]
We develop a digital quantum algorithm that simulates interaction with an environment using a small number of ancilla qubits.
We evaluate the algorithm by simulating thermal states of the transverse Ising model.
arXiv Detail & Related papers (2021-03-04T18:21:00Z) - Bernstein-Greene-Kruskal approach for the quantum Vlasov equation [91.3755431537592]
The one-dimensional stationary quantum Vlasov equation is analyzed using the energy as one of the dynamical variables.
In the semiclassical case where quantum tunneling effects are small, an infinite series solution is developed.
arXiv Detail & Related papers (2021-02-18T20:55:04Z) - QuTiP-BoFiN: A bosonic and fermionic numerical
hierarchical-equations-of-motion library with applications in
light-harvesting, quantum control, and single-molecule electronics [51.15339237964982]
"hierarchical equations of motion" (HEOM) is a powerful exact numerical approach to solve the dynamics.
It has been extended and applied to problems in solid-state physics, optics, single-molecule electronics, and biological physics.
We present a numerical library in Python, integrated with the powerful QuTiP platform, which implements the HEOM for both bosonic and fermionic environments.
arXiv Detail & Related papers (2020-10-21T07:54:56Z) - Non-Markovianity of Quantum Brownian Motion [0.0]
We study quantum non-Markovian dynamics of the Caldeira-Leggett model, a prototypical model for quantum Brownian motion.
A comparison of our results with the corresponding results for the spin-boson problem show a remarkable similarity in the structure of non-Markovian behavior of the two paradigmatic models.
arXiv Detail & Related papers (2020-07-06T16:35:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.