Engagement-Driven Content Generation with Large Language Models
- URL: http://arxiv.org/abs/2411.13187v5
- Date: Thu, 12 Jun 2025 08:28:48 GMT
- Title: Engagement-Driven Content Generation with Large Language Models
- Authors: Erica Coppolillo, Federico Cinus, Marco Minici, Francesco Bonchi, Giuseppe Manco,
- Abstract summary: Large Language Models (LLMs) demonstrate significant persuasive capabilities in one-on-one interactions.<n>Their influence within social networks, where interconnected users and complex opinion dynamics pose unique challenges, remains underexplored.<n>This paper addresses the research question: emphCan LLMs generate meaningful content that maximizes user engagement on social networks?
- Score: 8.049552839071918
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Large Language Models (LLMs) demonstrate significant persuasive capabilities in one-on-one interactions, but their influence within social networks, where interconnected users and complex opinion dynamics pose unique challenges, remains underexplored. This paper addresses the research question: \emph{Can LLMs generate meaningful content that maximizes user engagement on social networks?} To answer this, we propose a pipeline using reinforcement learning with simulated feedback, where the network's response to LLM-generated content (i.e., the reward) is simulated through a formal engagement model. This approach bypasses the temporal cost and complexity of live experiments, enabling an efficient feedback loop between the LLM and the network under study. It also allows to control over endogenous factors such as the LLM's position within the social network and the distribution of opinions on a given topic. Our approach is adaptive to the opinion distribution of the underlying network and agnostic to the specifics of the engagement model, which is embedded as a plug-and-play component. Such flexibility makes it suitable for more complex engagement tasks and interventions in computational social science. Using our framework, we analyze the performance of LLMs in generating social engagement under different conditions, showcasing their full potential in this task. The experimental code is publicly available at https://github.com/mminici/Engagement-Driven-Content-Generation.
Related papers
- Integrating LLM in Agent-Based Social Simulation: Opportunities and Challenges [0.7739037410679168]
The paper reviews recent findings on the ability of Large Language Models to replicate key aspects of human cognition.<n>The second part surveys emerging applications of LLMs in multi-agent simulation frameworks.<n>The paper concludes by advocating for hybrid approaches that integrate LLMs into traditional agent-based modeling platforms.
arXiv Detail & Related papers (2025-07-25T15:15:35Z) - SIV-Bench: A Video Benchmark for Social Interaction Understanding and Reasoning [53.16179295245888]
We introduce SIV-Bench, a novel video benchmark for evaluating the capabilities of Multimodal Large Language Models (MLLMs) across Social Scene Understanding (SSU), Social State Reasoning (SSR), and Social Dynamics Prediction (SDP)<n>SIV-Bench features 2,792 video clips and 8,792 meticulously generated question-answer pairs derived from a human-LLM collaborative pipeline.<n>It also includes a dedicated setup for analyzing the impact of different textual cues-original on-screen text, added dialogue, or no text.
arXiv Detail & Related papers (2025-06-05T05:51:35Z) - Gaussian mixture models as a proxy for interacting language models [17.070211970099514]
We introduce interacting Gaussian mixture models (GMMs) as an alternative to similar frameworks using large language models (LLMs)<n>We find that interacting GMMs capture important features of the dynamics in interacting LLMs.
arXiv Detail & Related papers (2025-05-29T23:39:24Z) - MLE-Dojo: Interactive Environments for Empowering LLM Agents in Machine Learning Engineering [57.156093929365255]
Gym-style framework for systematically reinforcement learning, evaluating, and improving autonomous large language model (LLM) agents.<n>MLE-Dojo covers diverse, open-ended MLE tasks carefully curated to reflect realistic engineering scenarios.<n>Its fully executable environment supports comprehensive agent training via both supervised fine-tuning and reinforcement learning.
arXiv Detail & Related papers (2025-05-12T17:35:43Z) - Large Language Model Driven Agents for Simulating Echo Chamber Formation [5.6488384323017]
The rise of echo chambers on social media platforms has heightened concerns about polarization and the reinforcement of existing beliefs.<n>Traditional approaches for simulating echo chamber formation have often relied on predefined rules and numerical simulations.<n>We present a novel framework that leverages large language models (LLMs) as generative agents to simulate echo chamber dynamics.
arXiv Detail & Related papers (2025-02-25T12:05:11Z) - Can LLMs Simulate Social Media Engagement? A Study on Action-Guided Response Generation [51.44040615856536]
This paper analyzes large language models' ability to simulate social media engagement through action guided response generation.
We benchmark GPT-4o-mini, O1-mini, and DeepSeek-R1 in social media engagement simulation regarding a major societal event.
arXiv Detail & Related papers (2025-02-17T17:43:08Z) - A Survey on Large Language Models with some Insights on their Capabilities and Limitations [0.3222802562733786]
Large Language Models (LLMs) exhibit remarkable performance across various language-related tasks.
LLMs have demonstrated emergent abilities extending beyond their core functions.
This paper explores the foundational components, scaling mechanisms, and architectural strategies that drive these capabilities.
arXiv Detail & Related papers (2025-01-03T21:04:49Z) - Scoring with Large Language Models: A Study on Measuring Empathy of Responses in Dialogues [3.2162648244439684]
We develop a framework for investigating how effective Large Language Models are at measuring and scoring empathy of responses in dialogues.
Our strategy is to approximate the performance of state-of-the-art and fine-tuned LLMs with explicit and explainable features.
Our results show that when only using embeddings, it is possible to achieve performance close to that of generic LLMs.
arXiv Detail & Related papers (2024-12-28T20:37:57Z) - Federated In-Context LLM Agent Learning [3.4757641432843487]
Large Language Models (LLMs) have revolutionized intelligent services by enabling logical reasoning, tool use, and interaction with external systems as agents.
In this paper, we propose a novel privacy-preserving Federated In-context LLM Agent Learning (FICAL) algorithm.
The results show that FICAL has competitive performance compared to other SOTA baselines with a significant communication cost decrease of $mathbf3.33times105$ times.
arXiv Detail & Related papers (2024-12-11T03:00:24Z) - NewsInterview: a Dataset and a Playground to Evaluate LLMs' Ground Gap via Informational Interviews [65.35458530702442]
We focus on journalistic interviews, a domain rich in grounding communication and abundant in data.
We curate a dataset of 40,000 two-person informational interviews from NPR and CNN.
LLMs are significantly less likely than human interviewers to use acknowledgements and to pivot to higher-level questions.
arXiv Detail & Related papers (2024-11-21T01:37:38Z) - SocialGPT: Prompting LLMs for Social Relation Reasoning via Greedy Segment Optimization [70.11167263638562]
Social relation reasoning aims to identify relation categories such as friends, spouses, and colleagues from images.
We first present a simple yet well-crafted framework named name, which combines the perception capability of Vision Foundation Models (VFMs) and the reasoning capability of Large Language Models (LLMs) within a modular framework.
arXiv Detail & Related papers (2024-10-28T18:10:26Z) - Probing Ranking LLMs: Mechanistic Interpretability in Information Retrieval [22.875174888476295]
We study the workings of state-of-the-art, fine-tuning-based passage-reranking transformer networks.
Our approach involves a probing-based, layer-by-layer analysis of neurons within ranking LLMs.
We identify individual or groups of known human-engineered and semantic features within the network's activations.
arXiv Detail & Related papers (2024-10-24T08:20:10Z) - Social Opinions Prediction Utilizes Fusing Dynamics Equation with LLM-based Agents [6.1923703280119105]
This study proposes the Fusing Dynamics Equation-Large Language Model (FDE-LLM) algorithm.<n>This innovative approach aligns the actions and evolution of opinions in Large Language Models with the real-world data on social networks.<n>Our algorithm accurately simulates the decay and recovery of opinions over time.
arXiv Detail & Related papers (2024-09-13T11:02:28Z) - Generative AI-in-the-loop: Integrating LLMs and GPTs into the Next Generation Networks [11.509880721677156]
Large language models (LLMs) have recently emerged, demonstrating near-human-level performance in cognitive tasks.
We propose the concept of "generative AI-in-the-loop"
We believe that combining LLMs and ML models allows both to leverage their respective capabilities and achieve better results than either model alone.
arXiv Detail & Related papers (2024-06-06T17:25:07Z) - Toward Self-Improvement of LLMs via Imagination, Searching, and Criticizing [56.75702900542643]
We introduce AlphaLLM for the self-improvements of Large Language Models.
It integrates Monte Carlo Tree Search (MCTS) with LLMs to establish a self-improving loop.
Our experimental results show that AlphaLLM significantly enhances the performance of LLMs without additional annotations.
arXiv Detail & Related papers (2024-04-18T15:21:34Z) - Knowledgeable Agents by Offline Reinforcement Learning from Large Language Model Rollouts [10.929547354171723]
This paper introduces Knowledgeable Agents from Language Model Rollouts (KALM)
It extracts knowledge from large language models (LLMs) in the form of imaginary rollouts that can be easily learned by the agent through offline reinforcement learning methods.
It achieves a success rate of 46% in executing tasks with unseen goals, substantially surpassing the 26% success rate achieved by baseline methods.
arXiv Detail & Related papers (2024-04-14T13:19:40Z) - ST-LLM: Large Language Models Are Effective Temporal Learners [58.79456373423189]
Large Language Models (LLMs) have showcased impressive capabilities in text comprehension and generation.
How to effectively encode and understand videos in video-based dialogue systems remains to be solved.
We propose ST-LLM, an effective video-LLM baseline with spatial-temporal sequence modeling inside LLM.
arXiv Detail & Related papers (2024-03-30T10:11:26Z) - Network Formation and Dynamics Among Multi-LLMs [5.8418144988203915]
We show that large language models (LLMs) exhibit key social network principles when asked about their preferences in network formation.
We also investigate LLMs' decision-making based on real-world networks, revealing that triadic closure and homophily have a stronger influence than preferential attachment.
arXiv Detail & Related papers (2024-02-16T13:10:14Z) - Rethinking Machine Unlearning for Large Language Models [85.92660644100582]
We explore machine unlearning in the domain of large language models (LLMs)
This initiative aims to eliminate undesirable data influence (e.g., sensitive or illegal information) and the associated model capabilities.
arXiv Detail & Related papers (2024-02-13T20:51:58Z) - Rethinking Interpretability in the Era of Large Language Models [76.1947554386879]
Large language models (LLMs) have demonstrated remarkable capabilities across a wide array of tasks.
The capability to explain in natural language allows LLMs to expand the scale and complexity of patterns that can be given to a human.
These new capabilities raise new challenges, such as hallucinated explanations and immense computational costs.
arXiv Detail & Related papers (2024-01-30T17:38:54Z) - Do LLM Agents Exhibit Social Behavior? [5.094340963261968]
State-Understanding-Value-Action (SUVA) is a framework to systematically analyze responses in social contexts.
It assesses social behavior through both their final decisions and the response generation processes leading to those decisions.
We demonstrate that utterance-based reasoning reliably predicts LLMs' final actions.
arXiv Detail & Related papers (2023-12-23T08:46:53Z) - Investigating the Factual Knowledge Boundary of Large Language Models with Retrieval Augmentation [109.8527403904657]
We show that large language models (LLMs) possess unwavering confidence in their knowledge and cannot handle the conflict between internal and external knowledge well.
Retrieval augmentation proves to be an effective approach in enhancing LLMs' awareness of knowledge boundaries.
We propose a simple method to dynamically utilize supporting documents with our judgement strategy.
arXiv Detail & Related papers (2023-07-20T16:46:10Z) - Check Your Facts and Try Again: Improving Large Language Models with
External Knowledge and Automated Feedback [127.75419038610455]
Large language models (LLMs) are able to generate human-like, fluent responses for many downstream tasks.
This paper proposes a LLM-Augmenter system, which augments a black-box LLM with a set of plug-and-play modules.
arXiv Detail & Related papers (2023-02-24T18:48:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.