論文の概要: WaterPark: A Robustness Assessment of Language Model Watermarking
- arxiv url: http://arxiv.org/abs/2411.13425v2
- Date: Tue, 17 Dec 2024 06:30:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-18 13:56:20.358825
- Title: WaterPark: A Robustness Assessment of Language Model Watermarking
- Title(参考訳): WaterPark: 言語モデルウォーターマーキングのロバストネス評価
- Authors: Jiacheng Liang, Zian Wang, Lauren Hong, Shouling Ji, Ting Wang,
- Abstract要約: WaterParkは10の最先端の透かしと12の代表的な攻撃を統合する統合プラットフォームである。
我々は既存の透かしを総合的に評価し、様々な設計選択が攻撃の堅牢性に与える影響を明らかにする。
- 参考スコア(独自算出の注目度): 40.50648910458236
- License:
- Abstract: Various watermarking methods (``watermarkers'') have been proposed to identify LLM-generated texts; yet, due to the lack of unified evaluation platforms, many critical questions remain under-explored: i) What are the strengths/limitations of various watermarkers, especially their attack robustness? ii) How do various design choices impact their robustness? iii) How to optimally operate watermarkers in adversarial environments? To fill this gap, we systematize existing LLM watermarkers and watermark removal attacks, mapping out their design spaces. We then develop WaterPark, a unified platform that integrates 10 state-of-the-art watermarkers and 12 representative attacks. More importantly, by leveraging WaterPark, we conduct a comprehensive assessment of existing watermarkers, unveiling the impact of various design choices on their attack robustness. We further explore the best practices to operate watermarkers in adversarial environments. We believe our study sheds light on current LLM watermarking techniques while WaterPark serves as a valuable testbed to facilitate future research.
- Abstract(参考訳): LLM生成テキストを識別するために様々な透かし法(`watermarkers'')が提案されているが、統一された評価プラットフォームが欠如しているため、多くの重要な疑問が未解決のまま残されている。
一 各種透かしの強度・耐揚力、特にその攻撃力の強さはどのようなものか。
二 様々な設計上の選択が、その堅牢性にどのような影響を及ぼすか。
三 敵国の環境において最適な透かしの運用方法
このギャップを埋めるために、既存のLLM透かしと透かし除去攻撃をシステム化し、それらの設計空間をマッピングする。
次にWaterParkという,最先端の10の透かしと12の代表的な攻撃を統合した統合プラットフォームを開発しました。
さらに重要なことは、WaterParkを活用することで、既存の透かしを総合的に評価し、様々な設計選択が攻撃の堅牢性に与える影響を明らかにします。
我々はさらに、敵対的な環境で透かしを操作するためのベストプラクティスを探求する。
我々の研究は、現在のLLM透かし技術に光を当てているのに対し、WaterParkは将来の研究を促進するための貴重なテストベッドとして機能していると信じています。
関連論文リスト
- Your Fixed Watermark is Fragile: Towards Semantic-Aware Watermark for EaaS Copyright Protection [5.2431999629987]
埋め込み・アズ・ア・サービス(E: Embedding-as-a-Service)はビジネスパターンとして成功したが、著作権侵害に関する重大な課題に直面している。
様々な研究が、Eサービスの著作権を保護するためのバックドアベースの透かし方式を提案している。
本稿では,従来の透かし方式が意味に依存しない特徴を持つことを示す。
論文 参考訳(メタデータ) (2024-11-14T11:06:34Z) - Watermarking Large Language Models and the Generated Content: Opportunities and Challenges [18.01886375229288]
生成型大規模言語モデル(LLM)は知的財産権侵害や機械生成誤報の拡散に懸念を抱いている。
ウォーターマーキングは、所有権を確立し、許可されていない使用を防止し、LLM生成コンテンツの起源を追跡できる有望な手法として機能する。
本稿では,LLMをウォーターマークする際の課題と機会を要約し,共有する。
論文 参考訳(メタデータ) (2024-10-24T18:55:33Z) - ESpeW: Robust Copyright Protection for LLM-based EaaS via Embedding-Specific Watermark [50.08021440235581]
組み込み・アズ・ア・サービス(Eding)はAIアプリケーションにおいて重要な役割を担っている。
編集はモデル抽出攻撃に対して脆弱であり、著作権保護の緊急の必要性を強調している。
そこで我々は,Edingの著作権保護を堅牢にするための新しい埋め込み専用透かし (ESpeW) 機構を提案する。
論文 参考訳(メタデータ) (2024-10-23T04:34:49Z) - Can Watermarked LLMs be Identified by Users via Crafted Prompts? [55.460327393792156]
この研究は、透かし付き大言語モデル(LLM)の非受容性を初めて研究したものである。
我々は、よく設計されたプロンプトを通して透かしを検出する、Water-Probeと呼ばれる識別アルゴリズムを設計する。
実験の結果、ほとんどの主流の透かしアルゴリズムは、よく設計されたプロンプトと容易に識別できることがわかった。
論文 参考訳(メタデータ) (2024-10-04T06:01:27Z) - On Evaluating The Performance of Watermarked Machine-Generated Texts Under Adversarial Attacks [20.972194348901958]
まず、メインストリームのウォーターマーキングスキームと、機械生成テキストに対する削除攻撃を組み合わせます。
8つの透かし(5つのプレテキスト、3つのポストテキスト)と12のアタック(2つのプレテキスト、10のポストテキスト)を87のシナリオで評価した。
その結果、KGWとExponentialの透かしは高いテキスト品質と透かしの保持を提供するが、ほとんどの攻撃に対して脆弱であることが示唆された。
論文 参考訳(メタデータ) (2024-07-05T18:09:06Z) - Large Language Model Watermark Stealing With Mixed Integer Programming [51.336009662771396]
大きな言語モデル(LLM)の透かしは、著作権に対処し、AI生成したテキストを監視し、その誤用を防ぐことを約束している。
近年の研究では、多数のキーを用いた透かし手法は、攻撃の除去に影響を受けやすいことが示されている。
我々は,最先端のLLM透かしスキームに対する新たなグリーンリスト盗難攻撃を提案する。
論文 参考訳(メタデータ) (2024-05-30T04:11:17Z) - Turning Your Strength into Watermark: Watermarking Large Language Model via Knowledge Injection [66.26348985345776]
本稿では,知識注入に基づく大規模言語モデル(LLM)のための新しい透かし手法を提案する。
透かし埋め込みの段階では、まず選択した知識に透かしを埋め込んで、透かし付き知識を得る。
透かし抽出段階では、疑わしいLLMを問うために、透かし付き知識に関する質問を設計する。
実験により, 透かし抽出の成功率は100%近くであり, 提案手法の有効性, 忠実性, ステルス性, 堅牢性を示した。
論文 参考訳(メタデータ) (2023-11-16T03:22:53Z) - Unbiased Watermark for Large Language Models [67.43415395591221]
本研究では, モデル生成出力の品質に及ぼす透かしの影響について検討した。
出力確率分布に影響を与えることなく、透かしを統合することができる。
ウォーターマークの存在は、下流タスクにおけるモデルの性能を損なうものではない。
論文 参考訳(メタデータ) (2023-09-22T12:46:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。