論文の概要: Watermarking Large Language Models and the Generated Content: Opportunities and Challenges
- arxiv url: http://arxiv.org/abs/2410.19096v1
- Date: Thu, 24 Oct 2024 18:55:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-28 13:37:18.508159
- Title: Watermarking Large Language Models and the Generated Content: Opportunities and Challenges
- Title(参考訳): 大規模言語モデルの透かしと生成内容:機会と課題
- Authors: Ruisi Zhang, Farinaz Koushanfar,
- Abstract要約: 生成型大規模言語モデル(LLM)は知的財産権侵害や機械生成誤報の拡散に懸念を抱いている。
ウォーターマーキングは、所有権を確立し、許可されていない使用を防止し、LLM生成コンテンツの起源を追跡できる有望な手法として機能する。
本稿では,LLMをウォーターマークする際の課題と機会を要約し,共有する。
- 参考スコア(独自算出の注目度): 18.01886375229288
- License:
- Abstract: The widely adopted and powerful generative large language models (LLMs) have raised concerns about intellectual property rights violations and the spread of machine-generated misinformation. Watermarking serves as a promising approch to establish ownership, prevent unauthorized use, and trace the origins of LLM-generated content. This paper summarizes and shares the challenges and opportunities we found when watermarking LLMs. We begin by introducing techniques for watermarking LLMs themselves under different threat models and scenarios. Next, we investigate watermarking methods designed for the content generated by LLMs, assessing their effectiveness and resilience against various attacks. We also highlight the importance of watermarking domain-specific models and data, such as those used in code generation, chip design, and medical applications. Furthermore, we explore methods like hardware acceleration to improve the efficiency of the watermarking process. Finally, we discuss the limitations of current approaches and outline future research directions for the responsible use and protection of these generative AI tools.
- Abstract(参考訳): 広く採用され強力な生成型大規模言語モデル (LLM) は知的財産権侵害や機械生成誤報の拡散を懸念している。
ウォーターマーキングは、所有権を確立し、許可されていない使用を防止し、LLM生成コンテンツの起源を追跡するための有望な手法として機能する。
本稿では,LLMをウォーターマークする際の課題と機会を要約し,共有する。
まず、異なる脅威モデルとシナリオの下でLLM自体を透かし出す手法を導入する。
次に,LLMが生成するコンテンツに対して設計した透かし手法について検討し,その有効性と各種攻撃に対するレジリエンスを評価する。
また、コード生成、チップ設計、医療アプリケーションなど、ドメイン固有のモデルとデータの透かしの重要性を強調します。
さらに,透かし処理の効率化を図るため,ハードウェアアクセラレーションなどの手法についても検討する。
最後に、現在のアプローチの限界について議論し、これらの生成型AIツールの責任ある使用と保護に関する今後の研究の方向性について概説する。
関連論文リスト
- De-mark: Watermark Removal in Large Language Models [59.00698153097887]
我々は、n-gramベースの透かしを効果的に除去するために設計された高度なフレームワークであるDe-markを紹介する。
提案手法は,透かしの強度を評価するために,ランダム選択探索と呼ばれる新しいクエリ手法を利用する。
論文 参考訳(メタデータ) (2024-10-17T17:42:10Z) - Watermarking Techniques for Large Language Models: A Survey [34.785207813971134]
大規模言語モデル(LLM)の濫用は、知的財産権問題、学術的不正行為、虚偽の内容、幻覚など、人間の社会に潜在的に害を与える。
我々の知る限り、LLM透かし技術の詳細を精査し分析する最初の徹底的なレビューである。
論文 参考訳(メタデータ) (2024-08-26T06:50:11Z) - Can Watermarking Large Language Models Prevent Copyrighted Text Generation and Hide Training Data? [62.72729485995075]
著作権文書の生成に対する抑止剤としての透かしの有効性について検討する。
我々は、透かしがメンバーシップ推論攻撃(MIA)の成功率に悪影響を及ぼすことを発見した。
透かしにおける最近のMIAの成功率を改善するための適応的手法を提案する。
論文 参考訳(メタデータ) (2024-07-24T16:53:09Z) - MarkLLM: An Open-Source Toolkit for LLM Watermarking [80.00466284110269]
MarkLLMは、LLMウォーターマーキングアルゴリズムを実装するためのオープンソースのツールキットである。
評価のために、MarkLLMは3つの視点にまたがる12のツールと、2種類の自動評価パイプラインを提供する。
論文 参考訳(メタデータ) (2024-05-16T12:40:01Z) - ModelShield: Adaptive and Robust Watermark against Model Extraction Attack [58.46326901858431]
大規模言語モデル(LLM)は、さまざまな機械学習タスクにまたがる汎用インテリジェンスを示す。
敵はモデル抽出攻撃を利用して モデル生成で符号化された モデルインテリジェンスを盗むことができる
ウォーターマーキング技術は、モデル生成コンテンツにユニークな識別子を埋め込むことによって、このような攻撃を防御する有望なソリューションを提供する。
論文 参考訳(メタデータ) (2024-05-03T06:41:48Z) - Topic-Based Watermarks for LLM-Generated Text [46.71493672772134]
本稿では,大規模言語モデル(LLM)のためのトピックベースの新しい透かしアルゴリズムを提案する。
トピック固有のトークンバイアスを使用することで、生成されたテキストにトピック依存の透かしを埋め込む。
提案手法は,テキストトピックを99.99%の信頼度で分類する。
論文 参考訳(メタデータ) (2024-04-02T17:49:40Z) - No Free Lunch in LLM Watermarking: Trade-offs in Watermarking Design Choices [20.20770405297239]
LLM透かし方式における一般的な設計選択は、結果のシステムが驚くほど攻撃を受けやすいことを示す。
本稿では, LLM透かしのガイドラインと防御について述べる。
論文 参考訳(メタデータ) (2024-02-25T20:24:07Z) - WatME: Towards Lossless Watermarking Through Lexical Redundancy [58.61972059246715]
本研究では,認知科学レンズを用いた大規模言語モデル(LLM)の異なる機能に対する透かしの効果を評価する。
透かしをシームレスに統合するための相互排他型透かし(WatME)を導入する。
論文 参考訳(メタデータ) (2023-11-16T11:58:31Z) - Turning Your Strength into Watermark: Watermarking Large Language Model via Knowledge Injection [66.26348985345776]
本稿では,知識注入に基づく大規模言語モデル(LLM)のための新しい透かし手法を提案する。
透かし埋め込みの段階では、まず選択した知識に透かしを埋め込んで、透かし付き知識を得る。
透かし抽出段階では、疑わしいLLMを問うために、透かし付き知識に関する質問を設計する。
実験により, 透かし抽出の成功率は100%近くであり, 提案手法の有効性, 忠実性, ステルス性, 堅牢性を示した。
論文 参考訳(メタデータ) (2023-11-16T03:22:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。