AMSnet-KG: A Netlist Dataset for LLM-based AMS Circuit Auto-Design Using Knowledge Graph RAG
- URL: http://arxiv.org/abs/2411.13560v1
- Date: Thu, 07 Nov 2024 02:49:53 GMT
- Title: AMSnet-KG: A Netlist Dataset for LLM-based AMS Circuit Auto-Design Using Knowledge Graph RAG
- Authors: Yichen Shi, Zhuofu Tao, Yuhao Gao, Tianjia Zhou, Cheng Chang, Yaxing Wang, Bingyu Chen, Genhao Zhang, Alvin Liu, Zhiping Yu, Ting-Jung Lin, Lei He,
- Abstract summary: Large language models (LLMs) have emerged as powerful tools for Electronic Design Automation (EDA) applications.
This paper introduces AMSnet-KG, a dataset encompassing various AMS circuit schematics and netlists.
We propose an automated AMS circuit generation framework that utilizes the comprehensive knowledge embedded in LLMs.
- Score: 15.61553255884534
- License:
- Abstract: High-performance analog and mixed-signal (AMS) circuits are mainly full-custom designed, which is time-consuming and labor-intensive. A significant portion of the effort is experience-driven, which makes the automation of AMS circuit design a formidable challenge. Large language models (LLMs) have emerged as powerful tools for Electronic Design Automation (EDA) applications, fostering advancements in the automatic design process for large-scale AMS circuits. However, the absence of high-quality datasets has led to issues such as model hallucination, which undermines the robustness of automatically generated circuit designs. To address this issue, this paper introduces AMSnet-KG, a dataset encompassing various AMS circuit schematics and netlists. We construct a knowledge graph with annotations on detailed functional and performance characteristics. Facilitated by AMSnet-KG, we propose an automated AMS circuit generation framework that utilizes the comprehensive knowledge embedded in LLMs. We first formulate a design strategy (e.g., circuit architecture using a number of circuit components) based on required specifications. Next, matched circuit components are retrieved and assembled into a complete topology, and transistor sizing is obtained through Bayesian optimization. Simulation results of the netlist are fed back to the LLM for further topology refinement, ensuring the circuit design specifications are met. We perform case studies of operational amplifier and comparator design to verify the automatic design flow from specifications to netlists with minimal human effort. The dataset used in this paper will be open-sourced upon publishing of this paper.
Related papers
- LaMAGIC: Language-Model-based Topology Generation for Analog Integrated Circuits [17.002169206594793]
We introduce LaMAGIC, a pioneering language model-based topology generation model.
LaMAGIC can efficiently generate an optimized circuit design from the custom specification in a single pass.
LaMAGIC achieves a success rate of up to 96% under a strict tolerance of 0.01.
arXiv Detail & Related papers (2024-07-19T22:51:41Z) - Automatic AI Model Selection for Wireless Systems: Online Learning via Digital Twinning [50.332027356848094]
AI-based applications are deployed at intelligent controllers to carry out functionalities like scheduling or power control.
The mapping between context and AI model parameters is ideally done in a zero-shot fashion.
This paper introduces a general methodology for the online optimization of AMS mappings.
arXiv Detail & Related papers (2024-06-22T11:17:50Z) - AMSNet: Netlist Dataset for AMS Circuits [8.601352527168821]
We develop an automatic technique for converting schematics into netlists, and create dataset AMSNet.
With a growing size, AMSNet can significantly facilitate exploration of MLLM applications in AMS circuit design.
arXiv Detail & Related papers (2024-05-15T02:46:04Z) - LLM4EDA: Emerging Progress in Large Language Models for Electronic
Design Automation [74.7163199054881]
Large Language Models (LLMs) have demonstrated their capability in context understanding, logic reasoning and answer generation.
We present a systematic study on the application of LLMs in the EDA field.
We highlight the future research direction, focusing on applying LLMs in logic synthesis, physical design, multi-modal feature extraction and alignment of circuits.
arXiv Detail & Related papers (2023-12-28T15:09:14Z) - Deep Learning Assisted Multiuser MIMO Load Modulated Systems for
Enhanced Downlink mmWave Communications [68.96633803796003]
This paper is focused on multiuser load modulation arrays (MU-LMAs) which are attractive due to their low system complexity and reduced cost for millimeter wave (mmWave) multi-input multi-output (MIMO) systems.
The existing precoding algorithm for downlink MU-LMA relies on a sub-array structured (SAS) transmitter which may suffer from decreased degrees of freedom and complex system configuration.
In this paper, we conceive an MU-LMA system employing a full-array structured (FAS) transmitter and propose two algorithms accordingly.
arXiv Detail & Related papers (2023-11-08T08:54:56Z) - CktGNN: Circuit Graph Neural Network for Electronic Design Automation [67.29634073660239]
This paper presents a Circuit Graph Neural Network (CktGNN) that simultaneously automates the circuit topology generation and device sizing.
We introduce Open Circuit Benchmark (OCB), an open-sourced dataset that contains $10$K distinct operational amplifiers.
Our work paves the way toward a learning-based open-sourced design automation for analog circuits.
arXiv Detail & Related papers (2023-08-31T02:20:25Z) - A Dynamic Feedforward Control Strategy for Energy-efficient Building
System Operation [59.56144813928478]
In current control strategies and optimization algorithms, most of them rely on receiving information from real-time feedback.
We propose an engineer-friendly control strategy framework that embeds dynamic prior knowledge from building system characteristics simultaneously for system control.
We tested it in a case for heating system control with typical control strategies, which shows our framework owns a further energy-saving potential of 15%.
arXiv Detail & Related papers (2023-01-23T09:07:07Z) - Deep Learning-Based Rate-Splitting Multiple Access for Reconfigurable
Intelligent Surface-Aided Tera-Hertz Massive MIMO [56.022764337221325]
Reconfigurable intelligent surface (RIS) can significantly enhance the service coverage of Tera-Hertz massive multiple-input multiple-output (MIMO) communication systems.
However, obtaining accurate high-dimensional channel state information (CSI) with limited pilot and feedback signaling overhead is challenging.
This paper proposes a deep learning (DL)-based rate-splitting multiple access scheme for RIS-aided Tera-Hertz multi-user multiple access systems.
arXiv Detail & Related papers (2022-09-18T03:07:37Z) - Analog/Mixed-Signal Circuit Synthesis Enabled by the Advancements of
Circuit Architectures and Machine Learning Algorithms [0.0]
We will focus on using neural-network-based surrogate models to expedite the circuit design parameter search and layout iterations.
Lastly, we will demonstrate the rapid synthesis of several AMS circuit examples from specification to silicon prototype, with significantly reduced human intervention.
arXiv Detail & Related papers (2021-12-15T01:47:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.