DocEDA: Automated Extraction and Design of Analog Circuits from Documents with Large Language Model
- URL: http://arxiv.org/abs/2412.05301v1
- Date: Mon, 25 Nov 2024 15:41:43 GMT
- Title: DocEDA: Automated Extraction and Design of Analog Circuits from Documents with Large Language Model
- Authors: Hong Cai Chen, Longchang Wu, Ming Gao, Lingrui Shen, Jiarui Zhong, Yipin Xu,
- Abstract summary: We introduce DocEDA, an automated system that leverages advanced computer vision techniques and Large Language Models (LLMs) to extract electrical parameters seamlessly from documents.
Experiments demonstrate that DocEDA significantly enhances the efficiency of processing circuit design documents and the accuracy of electrical parameter extraction.
- Score: 4.484539889795883
- License:
- Abstract: Efficient and accurate extraction of electrical parameters from circuit datasheets and design documents is critical for accelerating circuit design in Electronic Design Automation (EDA). Traditional workflows often rely on engineers manually searching and extracting these parameters, which is time-consuming, and prone to human error. To address these challenges, we introduce DocEDA, an automated system that leverages advanced computer vision techniques and Large Language Models (LLMs) to extract electrical parameters seamlessly from documents. The layout analysis model specifically designed for datasheet is proposed to classify documents into circuit-related parts. Utilizing the inherent Chain-of-Thought reasoning capabilities of LLMs, DocEDA automates the extraction of electronic component parameters from documents. For circuit diagrams parsing, an improved GAM-YOLO model is hybrid with topology identification to transform diagrams into circuit netlists. Then, a space mapping enhanced optimization framework is evoked for optimization the layout in the document. Experimental evaluations demonstrate that DocEDA significantly enhances the efficiency of processing circuit design documents and the accuracy of electrical parameter extraction. It exhibits adaptability to various circuit design scenarios and document formats, offering a novel solution for EDA with the potential to transform traditional methodologies.
Related papers
- Supervised Learning for Analog and RF Circuit Design: Benchmarks and Comparative Insights [10.354863964933019]
This study explores supervised ML-based approaches for designing circuit parameters from performance specifications across various circuit types.
Our results show that simpler circuits, such as low-noise amplifiers, achieve exceptional accuracy with mean relative errors as low as 0.3%.
For heterogeneous circuits, our approach achieves an 88% reduction in errors with increased training data, with the receiver achieving a mean relative error as low as 0.23%.
arXiv Detail & Related papers (2025-01-21T02:48:23Z) - AMSnet-KG: A Netlist Dataset for LLM-based AMS Circuit Auto-Design Using Knowledge Graph RAG [15.61553255884534]
Large language models (LLMs) have emerged as powerful tools for Electronic Design Automation (EDA) applications.
This paper introduces AMSnet-KG, a dataset encompassing various AMS circuit schematics and netlists.
We propose an automated AMS circuit generation framework that utilizes the comprehensive knowledge embedded in LLMs.
arXiv Detail & Related papers (2024-11-07T02:49:53Z) - LaMAGIC: Language-Model-based Topology Generation for Analog Integrated Circuits [17.002169206594793]
We introduce LaMAGIC, a pioneering language model-based topology generation model.
LaMAGIC can efficiently generate an optimized circuit design from the custom specification in a single pass.
LaMAGIC achieves a success rate of up to 96% under a strict tolerance of 0.01.
arXiv Detail & Related papers (2024-07-19T22:51:41Z) - LLM4EDA: Emerging Progress in Large Language Models for Electronic
Design Automation [74.7163199054881]
Large Language Models (LLMs) have demonstrated their capability in context understanding, logic reasoning and answer generation.
We present a systematic study on the application of LLMs in the EDA field.
We highlight the future research direction, focusing on applying LLMs in logic synthesis, physical design, multi-modal feature extraction and alignment of circuits.
arXiv Detail & Related papers (2023-12-28T15:09:14Z) - CktGNN: Circuit Graph Neural Network for Electronic Design Automation [67.29634073660239]
This paper presents a Circuit Graph Neural Network (CktGNN) that simultaneously automates the circuit topology generation and device sizing.
We introduce Open Circuit Benchmark (OCB), an open-sourced dataset that contains $10$K distinct operational amplifiers.
Our work paves the way toward a learning-based open-sourced design automation for analog circuits.
arXiv Detail & Related papers (2023-08-31T02:20:25Z) - Artificial-Intelligence-Based Design for Circuit Parameters of Power
Converters [0.0]
An artificial-intelligence-based design (AI-D) approach is proposed in this article for the parameter design of power converters.
To mitigate human-dependence for the sake of high accuracy and easy implementation, simulation tools and batch-normalization neural network (BN-NN) are adopted.
The proposed AI-D approach is validated in the circuit parameter design of the synchronous buck converter in the 48 to 12 V accessory-load power supply system in electric vehicle.
arXiv Detail & Related papers (2023-07-30T08:39:41Z) - Learning to Design Analog Circuits to Meet Threshold Specifications [2.5818330243826924]
We propose a method for generating from simulation data a dataset on which a system can be trained to design circuits to meet threshold specifications.
We show that our method consistently reaches success rate better than 90% at 5% error margin, while also improving data efficiency by upward of an order of magnitude.
arXiv Detail & Related papers (2023-07-25T23:25:05Z) - Adaptive Planning Search Algorithm for Analog Circuit Verification [53.97809573610992]
We propose a machine learning (ML) approach, which uses less simulations.
We show that the proposed approach is able to provide OCCs closer to the specifications for all circuits.
arXiv Detail & Related papers (2023-06-23T12:57:46Z) - AutoPEFT: Automatic Configuration Search for Parameter-Efficient
Fine-Tuning [77.61565726647784]
Motivated by advances in neural architecture search, we propose AutoPEFT for automatic PEFT configuration selection.
We show that AutoPEFT-discovered configurations significantly outperform existing PEFT methods and are on par or better than FFT without incurring substantial training efficiency costs.
arXiv Detail & Related papers (2023-01-28T08:51:23Z) - Pretraining Graph Neural Networks for few-shot Analog Circuit Modeling
and Design [68.1682448368636]
We present a supervised pretraining approach to learn circuit representations that can be adapted to new unseen topologies or unseen prediction tasks.
To cope with the variable topological structure of different circuits we describe each circuit as a graph and use graph neural networks (GNNs) to learn node embeddings.
We show that pretraining GNNs on prediction of output node voltages can encourage learning representations that can be adapted to new unseen topologies or prediction of new circuit level properties.
arXiv Detail & Related papers (2022-03-29T21:18:47Z) - Automatic digital twin data model generation of building energy systems
from piping and instrumentation diagrams [58.720142291102135]
We present an approach to recognize symbols and connections of P&ID from buildings in a completely automated way.
We apply algorithms for symbol recognition, line recognition and derivation of connections to the data sets.
The approach can be used in further processes like control generation, (distributed) model predictive control or fault detection.
arXiv Detail & Related papers (2021-08-31T15:09:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.