論文の概要: A Random Forest approach to detect and identify Unlawful Insider Trading
- arxiv url: http://arxiv.org/abs/2411.13564v1
- Date: Sat, 09 Nov 2024 18:01:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-24 05:04:57.209977
- Title: A Random Forest approach to detect and identify Unlawful Insider Trading
- Title(参考訳): 非合法インサイダー取引の検出と識別のためのランダムフォレストアプローチ
- Authors: Krishna Neupane, Igor Griva,
- Abstract要約: 本研究では、不正なインサイダー取引を検出するために、エンドツーエンドの自動ステート・オブ・アーティファクト手法を実装した。
我々の最高の業績モデルは96.43パーセントの取引を正確に分類した。
分類タスクに加え、モデル生成したGini Impurityベースの特徴ランキングでは、置換値に基づくオーナシップとガバナンス関連の特徴が重要な役割を担っている。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: According to The Exchange Act, 1934 unlawful insider trading is the abuse of access to privileged corporate information. While a blurred line between "routine" the "opportunistic" insider trading exists, detection of strategies that insiders mold to maneuver fair market prices to their advantage is an uphill battle for hand-engineered approaches. In the context of detailed high-dimensional financial and trade data that are structurally built by multiple covariates, in this study, we explore, implement and provide detailed comparison to the existing study (Deng et al. (2019)) and independently implement automated end-to-end state-of-art methods by integrating principal component analysis to the random forest (PCA-RF) followed by a standalone random forest (RF) with 320 and 3984 randomly selected, semi-manually labeled and normalized transactions from multiple industry. The settings successfully uncover latent structures and detect unlawful insider trading. Among the multiple scenarios, our best-performing model accurately classified 96.43 percent of transactions. Among all transactions the models find 95.47 lawful as lawful and $98.00$ unlawful as unlawful percent. Besides, the model makes very few mistakes in classifying lawful as unlawful by missing only 2.00 percent. In addition to the classification task, model generated Gini Impurity based features ranking, our analysis show ownership and governance related features based on permutation values play important roles. In summary, a simple yet powerful automated end-to-end method relieves labor-intensive activities to redirect resources to enhance rule-making and tracking the uncaptured unlawful insider trading transactions. We emphasize that developed financial and trading features are capable of uncovering fraudulent behaviors.
- Abstract(参考訳): 1934年取引法によると、非合法なインサイダー取引は特権のある企業情報へのアクセスを乱用している。
ルーティン」と「機会主義的」インサイダー取引の間には曖昧な線があるが、インサイダーが公正な市場価格を有利に操る戦略を検出することは、手作りのアプローチにとって不利な戦いである。
本研究では,複数の共変種によって構造的に構築された詳細な高次元金融・貿易データについて,既存の研究(Deng et al (2019))と比較し,個別に自動エンドツーエンドの手法を実装し,主成分分析をランダム林(PCA-RF)に統合し,次いで320,3984個のランダム林(RF)をランダムに選択し,半手動でラベル付けし,正規化された取引を複数産業から行う。
設定は遅延構造を発見し、不正なインサイダー取引を検出することに成功している。
複数のシナリオの中で、私たちの最高のパフォーマンスモデルは96.43パーセントのトランザクションを正確に分類しました。
すべての取引の中で、95.47は合法として合法であり、9,8.00$は違法である。
さらに、このモデルでは、合法を違法と分類する誤りはほとんどなく、わずか2.00%しか見当たらない。
分類タスクに加え、モデル生成したGini Impurityベースの特徴ランキングでは、置換値に基づくオーナシップとガバナンス関連の特徴が重要な役割を担っている。
要約すると、単純だが強力なエンドツーエンドの方法により、労働集約的な活動が軽減され、ルール作成を強化し、不正なインサイダー取引を追跡できる。
我々は、金融・トレーディングの発達した特徴が不正行為を明らかにすることができることを強調した。
関連論文リスト
- Evaluating Fairness in Transaction Fraud Models: Fairness Metrics, Bias Audits, and Challenges [3.499319293058353]
アルゴリズムの公正性に関する広範な研究にもかかわらず、不正検出モデルにおけるバイアスの研究には顕著なギャップがある。
これらの課題には、不正データの不均衡の性質と不正保護とサービス品質のトレードオフを考慮に入れた公正度メトリクスの必要性が含まれる。
本稿では,公開合成データセットを用いた取引不正モデルの包括的公正性評価を行う。
論文 参考訳(メタデータ) (2024-09-06T16:08:27Z) - Trustless Audits without Revealing Data or Models [49.23322187919369]
モデルプロバイダが(アーキテクチャではなく)モデルウェイトとデータシークレットを維持しながら、他のパーティがモデルとデータプロパティを信頼性のない監査を行うことが可能であることを示す。
私たちはZkAuditと呼ばれるプロトコルを設計し、モデルプロバイダがデータセットとモデルの重みの暗号的コミットメントを公開します。
論文 参考訳(メタデータ) (2024-04-06T04:43:06Z) - Securing Transactions: A Hybrid Dependable Ensemble Machine Learning
Model using IHT-LR and Grid Search [2.4374097382908477]
本稿では,複数のアルゴリズムをインテリジェントに組み合わせて不正識別を強化する,最先端のハイブリッドアンサンブル(ENS)機械学習(ML)モデルを提案する。
実験は,284,807件の取引からなる公開クレジットカードデータセットを用いて実施した。
提案したモデルは、99.66%、99.73%、98.56%、99.79%の精度で、それぞれDT、RF、KNN、ENSモデルに完全100%の精度を実現している。
論文 参考訳(メタデータ) (2024-02-22T09:01:42Z) - Evaluating the Fairness of Discriminative Foundation Models in Computer
Vision [51.176061115977774]
本稿では,CLIP (Contrastive Language-Pretraining) などの差別基盤モデルのバイアス評価のための新しい分類法を提案する。
そして、これらのモデルにおけるバイアスを緩和するための既存の手法を分類学に関して体系的に評価する。
具体的には,ゼロショット分類,画像検索,画像キャプションなど,OpenAIのCLIPとOpenCLIPモデルをキーアプリケーションとして評価する。
論文 参考訳(メタデータ) (2023-10-18T10:32:39Z) - Doubly High-Dimensional Contextual Bandits: An Interpretable Model for
Joint Assortment-Pricing [24.80305303473745]
小売業を営む上での課題は、消費者に提示する商品の選択方法や、収益や利益を最大化する商品の価格設定方法だ。
コンテクスト的帯域幅に基づくアソシエーションプライシングへの共同アプローチを提案する。
我々は、バンディット方式による収益や利益の少なくとも3倍の増加と、学習された潜在因子モデルの解釈可能性を示す。
論文 参考訳(メタデータ) (2023-09-14T00:45:36Z) - Transaction Fraud Detection via an Adaptive Graph Neural Network [64.9428588496749]
本稿では,アダプティブサンプリングとアグリゲーションに基づくグラフニューラルネットワーク(ASA-GNN)を提案する。
ノイズの多いノードをフィルタリングし、不正なノードを補うために、隣のサンプリング戦略を実行する。
3つのファイナンシャルデータセットの実験により,提案手法のASA-GNNは最先端のデータセットよりも優れていることが示された。
論文 参考訳(メタデータ) (2023-07-11T07:48:39Z) - Learning to Incentivize Information Acquisition: Proper Scoring Rules
Meet Principal-Agent Model [64.94131130042275]
インセンティブ付き情報取得問題について検討し、主治官がエージェントを雇って代理情報を収集する。
UCBアルゴリズムをモデルに適合させる,実証可能なサンプル効率の良いアルゴリズムを設計する。
本アルゴリズムは,主役の最適利益に対する微妙な推定手順と,所望のエージェントの行動にインセンティブを与える保守的な補正手法を特徴とする。
論文 参考訳(メタデータ) (2023-03-15T13:40:16Z) - Quantum computational finance: martingale asset pricing for incomplete
markets [69.73491758935712]
金融の価格問題に様々な量子技術を適用することができることを示す。
従来の研究と異なる3つの方法について議論する。
論文 参考訳(メタデータ) (2022-09-19T09:22:01Z) - Scrutinizing Shipment Records To Thwart Illegal Timber Trade [14.559268536152926]
木材・森林製品産業における 灰色と黒色の市場活動は 木材が収穫された国に限らず 世界のサプライチェーン全体に広がっています
既存のアプローチは、大規模な貿易データへの適用性において、ある種の欠点に悩まされている。
本稿では,大規模な異種データに適用可能なコントラスト学習に基づく異種異常検出(CHAD)を提案する。
論文 参考訳(メタデータ) (2022-07-31T18:54:52Z) - Protecting Retail Investors from Order Book Spoofing using a GRU-based
Detection Model [0.0]
本稿では,不正行為を検知し,詐欺未遂を投資家に知らせる手法を提案する。
我々のフレームワークは、高度に拡張可能なGRU(Gated Recurrent Unit)モデルに基づいています。
論文 参考訳(メタデータ) (2021-10-08T14:23:41Z) - Uncertainty-Aware Consistency Regularization for Cross-Domain Semantic
Segmentation [63.75774438196315]
Unsupervised Domain adapt (UDA) は、未ラベルのデータのみを持つ新しいターゲットドメインにソースドメインの既存のモデルを適用することを目的としている。
既存のほとんどの手法は、エラーを起こしやすい識別器ネットワークまたは不合理な教師モデルから生じる顕著な負の伝達に悩まされている。
ドメイン間セマンティックセグメンテーションのための不確実性を考慮した整合性正規化手法を提案する。
論文 参考訳(メタデータ) (2020-04-19T15:30:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。