Improved GUI Grounding via Iterative Narrowing
- URL: http://arxiv.org/abs/2411.13591v5
- Date: Fri, 20 Dec 2024 07:16:32 GMT
- Title: Improved GUI Grounding via Iterative Narrowing
- Authors: Anthony Nguyen,
- Abstract summary: We introduce a visual prompting framework that employs an iterative narrowing mechanism to improve the performance of both general and fine-tuned models in GUI grounding.
For evaluation, we tested our method on a comprehensive benchmark comprising various UI platforms and provided the code to reproduce our results.
- Score: 0.03922370499388702
- License:
- Abstract: Graphical User Interface (GUI) grounding plays a crucial role in enhancing the capabilities of Vision-Language Model (VLM) agents. While general VLMs, such as GPT-4V, demonstrate strong performance across various tasks, their proficiency in GUI grounding remains suboptimal. Recent studies have focused on fine-tuning these models specifically for zero-shot GUI grounding, yielding significant improvements over baseline performance. We introduce a visual prompting framework that employs an iterative narrowing mechanism to further improve the performance of both general and fine-tuned models in GUI grounding. For evaluation, we tested our method on a comprehensive benchmark comprising various UI platforms and provided the code to reproduce our results.
Related papers
- GUI-Bee: Align GUI Action Grounding to Novel Environments via Autonomous Exploration [56.58744345634623]
We propose GUI-Bee, an MLLM-based autonomous agent, to collect high-quality, environment-specific data through exploration.
We also introduce NovelScreenSpot, a benchmark for testing how well the data can help align GUI action grounding models to novel environments.
arXiv Detail & Related papers (2025-01-23T18:16:21Z) - UI-TARS: Pioneering Automated GUI Interaction with Native Agents [58.18100825673032]
This paper introduces UI-TARS, a native GUI agent model that solely perceives the screenshots as input and performs human-like interactions.
In the OSWorld benchmark, UI-TARS achieves scores of 24.6 with 50 steps and 22.7 with 15 steps, outperforming Claude (22.0 and 14.9 respectively)
arXiv Detail & Related papers (2025-01-21T17:48:10Z) - Zero-Shot Prompting Approaches for LLM-based Graphical User Interface Generation [53.1000575179389]
We propose a Retrieval-Augmented GUI Generation (RAGG) approach, integrated with an LLM-based GUI retrieval re-ranking and filtering mechanism.
In addition, we adapt Prompt Decomposition (PDGG) and Self-Critique (SCGG) for GUI generation.
Our evaluation, which encompasses over 3,000 GUI annotations from over 100 crowd-workers with UI/UX experience, shows that SCGG, in contrast to PDGG and RAGG, can lead to more effective GUI generation.
arXiv Detail & Related papers (2024-12-15T22:17:30Z) - Aguvis: Unified Pure Vision Agents for Autonomous GUI Interaction [69.57190742976091]
We introduce Aguvis, a unified vision-based framework for autonomous GUI agents.
Our approach leverages image-based observations, and grounding instructions in natural language to visual elements.
To address the limitations of previous work, we integrate explicit planning and reasoning within the model.
arXiv Detail & Related papers (2024-12-05T18:58:26Z) - OS-ATLAS: A Foundation Action Model for Generalist GUI Agents [55.37173845836839]
OS-Atlas is a foundational GUI action model that excels at GUI grounding and OOD agentic tasks.
We are releasing the largest open-source cross-platform GUI grounding corpus to date, which contains over 13 million GUI elements.
arXiv Detail & Related papers (2024-10-30T17:10:19Z) - Navigating the Digital World as Humans Do: Universal Visual Grounding for GUI Agents [20.08996257335876]
We advocate a human-like embodiment for GUI agents that perceive the environment entirely visually and directly take pixel-level operations on the GUI.
We collect the largest dataset for GUI visual grounding so far, containing 10M GUI elements and their referring expressions over 1.3M screenshots.
We show that a simple recipe, which includes web-based synthetic data and slight adaptation of the LLaVA architecture, is surprisingly effective for training such visual grounding models.
arXiv Detail & Related papers (2024-10-07T17:47:50Z) - GUICourse: From General Vision Language Models to Versatile GUI Agents [75.5150601913659]
We contribute GUICourse, a suite of datasets to train visual-based GUI agents.
First, we introduce the GUIEnv dataset to strengthen the OCR and grounding capabilities of VLMs.
Then, we introduce the GUIAct and GUIChat datasets to enrich their knowledge of GUI components and interactions.
arXiv Detail & Related papers (2024-06-17T08:30:55Z) - Graph4GUI: Graph Neural Networks for Representing Graphical User Interfaces [27.84098739594353]
Graph4GUI exploits graph neural networks to capture individual elements' properties and semantic-visuo-spatial constraints in a layout.
The learned representation demonstrated its effectiveness in multiple tasks, especially generating designs in a challenging GUI autocompletion task.
arXiv Detail & Related papers (2024-04-21T04:06:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.