Decompose and Leverage Preferences from Expert Models for Improving Trustworthiness of MLLMs
- URL: http://arxiv.org/abs/2411.13697v1
- Date: Wed, 20 Nov 2024 20:28:04 GMT
- Title: Decompose and Leverage Preferences from Expert Models for Improving Trustworthiness of MLLMs
- Authors: Rui Cao, Yuming Jiang, Michael Schlichtkrull, Andreas Vlachos,
- Abstract summary: Multimodal Large Language Models (MLLMs) can enhance trustworthiness by aligning with human preferences.
Recent works employ evaluation models for assessing MLLMs' responses, using the model-based assessments to automate preference dataset construction.
We propose DecompGen, a decomposable framework that uses an ensemble of open-sourced expert models.
- Score: 21.02718263476369
- License:
- Abstract: Multimodal Large Language Models (MLLMs) can enhance trustworthiness by aligning with human preferences. As human preference labeling is laborious, recent works employ evaluation models for assessing MLLMs' responses, using the model-based assessments to automate preference dataset construction. This approach, however, faces challenges with MLLMs' lengthy and compositional responses, which often require diverse reasoning skills that a single evaluation model may not fully possess. Additionally, most existing methods rely on closed-source models as evaluators. To address limitations, we propose DecompGen, a decomposable framework that uses an ensemble of open-sourced expert models. DecompGen breaks down each response into atomic verification tasks, assigning each task to an appropriate expert model to generate fine-grained assessments. The DecompGen feedback is used to automatically construct our preference dataset, DGPref. MLLMs aligned with DGPref via preference learning show improvements in trustworthiness, demonstrating the effectiveness of DecompGen.
Related papers
- Forewarned is Forearmed: Leveraging LLMs for Data Synthesis through Failure-Inducing Exploration [90.41908331897639]
Large language models (LLMs) have significantly benefited from training on diverse, high-quality task-specific data.
We present a novel approach, ReverseGen, designed to automatically generate effective training samples.
arXiv Detail & Related papers (2024-10-22T06:43:28Z) - OLMES: A Standard for Language Model Evaluations [64.85905119836818]
We propose OLMES, a practical, open standard for reproducible language model evaluations.
We identify and review the varying factors in evaluation practices adopted by the community.
OLMES supports meaningful comparisons between smaller base models that require the unnatural "cloze" formulation of multiple-choice questions.
arXiv Detail & Related papers (2024-06-12T17:37:09Z) - UICoder: Finetuning Large Language Models to Generate User Interface Code through Automated Feedback [21.858896845159208]
Large language models (LLMs) struggle to consistently generate UI code that compiles and produces visually relevant designs.
Existing approaches to improve generation rely on expensive human feedback or distilling a proprietary model.
Our method starts with an existing LLM and iteratively produces improved models by self-generating a large synthetic dataset.
arXiv Detail & Related papers (2024-06-11T21:53:46Z) - Cycles of Thought: Measuring LLM Confidence through Stable Explanations [53.15438489398938]
Large language models (LLMs) can reach and even surpass human-level accuracy on a variety of benchmarks, but their overconfidence in incorrect responses is still a well-documented failure mode.
We propose a framework for measuring an LLM's uncertainty with respect to the distribution of generated explanations for an answer.
arXiv Detail & Related papers (2024-06-05T16:35:30Z) - Aligning Large Language Models via Fine-grained Supervision [20.35000061196631]
Pre-trained large-scale language models (LLMs) excel at producing coherent articles, yet their outputs may be untruthful, toxic, or fail to align with user expectations.
Current approaches focus on using reinforcement learning with human feedback to improve model alignment.
We propose a method to enhance LLM alignment through fine-grained token-level supervision.
arXiv Detail & Related papers (2024-06-04T20:21:45Z) - Self-Exploring Language Models: Active Preference Elicitation for Online Alignment [88.56809269990625]
We propose a bilevel objective optimistically biased towards potentially high-reward responses to actively explore out-of-distribution regions.
Our experimental results demonstrate that when fine-tuned on Zephyr-7B-SFT and Llama-3-8B-Instruct models, Self-Exploring Language Models (SELM) significantly boosts the performance on instruction-following benchmarks.
arXiv Detail & Related papers (2024-05-29T17:59:07Z) - Enhancing Large Language Model Performance To Answer Questions and
Extract Information More Accurately [2.1715455600756646]
Large Language Models (LLMs) generate responses to questions.
Their effectiveness is often hindered by sub-optimal quality of answers and occasional failures to provide accurate responses to questions.
To address these challenges, a fine-tuning process is employed, involving feedback and examples to refine models.
arXiv Detail & Related papers (2024-01-27T00:18:07Z) - Self-Evaluation Improves Selective Generation in Large Language Models [54.003992911447696]
We reformulate open-ended generation tasks into token-level prediction tasks.
We instruct an LLM to self-evaluate its answers.
We benchmark a range of scoring methods based on self-evaluation.
arXiv Detail & Related papers (2023-12-14T19:09:22Z) - Generative Judge for Evaluating Alignment [84.09815387884753]
We propose a generative judge with 13B parameters, Auto-J, designed to address these challenges.
Our model is trained on user queries and LLM-generated responses under massive real-world scenarios.
Experimentally, Auto-J outperforms a series of strong competitors, including both open-source and closed-source models.
arXiv Detail & Related papers (2023-10-09T07:27:15Z) - Multidimensional Item Response Theory in the Style of Collaborative
Filtering [0.8057006406834467]
This paper presents a machine learning approach to multidimensional item response theory (MIRT)
Inspired by collaborative filtering, we define a general class of models that includes many MIRT models.
We discuss the use of penalized joint maximum likelihood (JML) to estimate individual models and cross-validation to select the best performing model.
arXiv Detail & Related papers (2023-01-03T00:56:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.