Multidimensional Item Response Theory in the Style of Collaborative
Filtering
- URL: http://arxiv.org/abs/2301.00909v1
- Date: Tue, 3 Jan 2023 00:56:27 GMT
- Title: Multidimensional Item Response Theory in the Style of Collaborative
Filtering
- Authors: Yoav Bergner, Peter F. Halpin, Jill-J\^enn Vie
- Abstract summary: This paper presents a machine learning approach to multidimensional item response theory (MIRT)
Inspired by collaborative filtering, we define a general class of models that includes many MIRT models.
We discuss the use of penalized joint maximum likelihood (JML) to estimate individual models and cross-validation to select the best performing model.
- Score: 0.8057006406834467
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a machine learning approach to multidimensional item
response theory (MIRT), a class of latent factor models that can be used to
model and predict student performance from observed assessment data. Inspired
by collaborative filtering, we define a general class of models that includes
many MIRT models. We discuss the use of penalized joint maximum likelihood
(JML) to estimate individual models and cross-validation to select the best
performing model. This model evaluation process can be optimized using batching
techniques, such that even sparse large-scale data can be analyzed efficiently.
We illustrate our approach with simulated and real data, including an example
from a massive open online course (MOOC). The high-dimensional model fit to
this large and sparse dataset does not lend itself well to traditional methods
of factor interpretation. By analogy to recommender-system applications, we
propose an alternative "validation" of the factor model, using auxiliary
information about the popularity of items consulted during an open-book exam in
the course.
Related papers
- Revisiting SMoE Language Models by Evaluating Inefficiencies with Task Specific Expert Pruning [78.72226641279863]
Sparse Mixture of Expert (SMoE) models have emerged as a scalable alternative to dense models in language modeling.
Our research explores task-specific model pruning to inform decisions about designing SMoE architectures.
We introduce an adaptive task-aware pruning technique UNCURL to reduce the number of experts per MoE layer in an offline manner post-training.
arXiv Detail & Related papers (2024-09-02T22:35:03Z) - TRAK: Attributing Model Behavior at Scale [79.56020040993947]
We present TRAK (Tracing with Randomly-trained After Kernel), a data attribution method that is both effective and computationally tractable for large-scale, differenti models.
arXiv Detail & Related papers (2023-03-24T17:56:22Z) - Evaluating Representations with Readout Model Switching [19.907607374144167]
In this paper, we propose to use the Minimum Description Length (MDL) principle to devise an evaluation metric.
We design a hybrid discrete and continuous-valued model space for the readout models and employ a switching strategy to combine their predictions.
The proposed metric can be efficiently computed with an online method and we present results for pre-trained vision encoders of various architectures.
arXiv Detail & Related papers (2023-02-19T14:08:01Z) - Dataless Knowledge Fusion by Merging Weights of Language Models [51.8162883997512]
Fine-tuning pre-trained language models has become the prevalent paradigm for building downstream NLP models.
This creates a barrier to fusing knowledge across individual models to yield a better single model.
We propose a dataless knowledge fusion method that merges models in their parameter space.
arXiv Detail & Related papers (2022-12-19T20:46:43Z) - Exploring validation metrics for offline model-based optimisation with
diffusion models [50.404829846182764]
In model-based optimisation (MBO) we are interested in using machine learning to design candidates that maximise some measure of reward with respect to a black box function called the (ground truth) oracle.
While an approximation to the ground oracle can be trained and used in place of it during model validation to measure the mean reward over generated candidates, the evaluation is approximate and vulnerable to adversarial examples.
This is encapsulated under our proposed evaluation framework which is also designed to measure extrapolation.
arXiv Detail & Related papers (2022-11-19T16:57:37Z) - MACE: An Efficient Model-Agnostic Framework for Counterfactual
Explanation [132.77005365032468]
We propose a novel framework of Model-Agnostic Counterfactual Explanation (MACE)
In our MACE approach, we propose a novel RL-based method for finding good counterfactual examples and a gradient-less descent method for improving proximity.
Experiments on public datasets validate the effectiveness with better validity, sparsity and proximity.
arXiv Detail & Related papers (2022-05-31T04:57:06Z) - Finding Materialized Models for Model Reuse [20.97918143614477]
Materialized model query aims to find the most appropriate materialized model as the initial model for model reuse.
We present textsfMMQ, a source-data free, general, efficient, and effective materialized model query framework.
Experiments on a range of practical model reuse workloads demonstrate the effectiveness and efficiency of textsfMMQ.
arXiv Detail & Related papers (2021-10-13T06:55:44Z) - Efficient Data-specific Model Search for Collaborative Filtering [56.60519991956558]
Collaborative filtering (CF) is a fundamental approach for recommender systems.
In this paper, motivated by the recent advances in automated machine learning (AutoML), we propose to design a data-specific CF model.
Key here is a new framework that unifies state-of-the-art (SOTA) CF methods and splits them into disjoint stages of input encoding, embedding function, interaction and prediction function.
arXiv Detail & Related papers (2021-06-14T14:30:32Z) - Multitarget Tracking with Transformers [21.81266872964314]
Multitarget Tracking (MTT) is a problem of tracking the states of an unknown number of objects using noisy measurements.
In this paper, we propose a high-performing deep-learning method for MTT based on the Transformer architecture.
arXiv Detail & Related papers (2021-04-01T19:14:55Z) - Multi-Objective Evolutionary Design of CompositeData-Driven Models [0.0]
The implemented approach is based on a parameter-free genetic algorithm for model design called GPComp@Free.
The experimental results confirm that a multi-objective approach to the model design allows achieving better diversity and quality of obtained models.
arXiv Detail & Related papers (2021-03-01T20:45:24Z) - Amortized Bayesian model comparison with evidential deep learning [0.12314765641075436]
We propose a novel method for performing Bayesian model comparison using specialized deep learning architectures.
Our method is purely simulation-based and circumvents the step of explicitly fitting all alternative models under consideration to each observed dataset.
We show that our method achieves excellent results in terms of accuracy, calibration, and efficiency across the examples considered in this work.
arXiv Detail & Related papers (2020-04-22T15:15:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.