Self-testing quantum randomness expansion on an integrated photonic chip
- URL: http://arxiv.org/abs/2411.13712v1
- Date: Wed, 20 Nov 2024 21:14:53 GMT
- Title: Self-testing quantum randomness expansion on an integrated photonic chip
- Authors: Gong Zhang, Ignatius William Primaatmaja, Yue Chen, Si Qi Ng, Hong Jie Ng, Marco Pistoia, Xiao Gong, Koon Tong Goh, Chao Wang, Charles Lim,
- Abstract summary: We develop and implement a self-testing quantum random number generator (QRNG)
The proposal opens up the possibility to implement miniaturised QRNG devices at production scale.
- Score: 21.4228840758231
- License:
- Abstract: The power of quantum random number generation is more than just the ability to create truly random numbers$\unicode{x2013}$it can also enable self-testing, which allows the user to verify the implementation integrity of certain critical quantum components with minimal assumptions. In this work, we develop and implement a self-testing quantum random number generator (QRNG) chipset capable of generating 15.33 Mbits of certifiable randomness in each run (an expansion rate of $5.11\times 10^{-4}$ at a repetition rate of 10 Mhz). The chip design is based on a highly loss-and-noise tolerant measurement-device-independent protocol, where random coherent states encoded using quadrature phase shift keying are used to self-test the quantum homodyne detection unit: well-known to be challenging to characterise in practice. Importantly, this proposal opens up the possibility to implement miniaturised self-testing QRNG devices at production scale using standard silicon photonics foundry platforms.
Related papers
- Continuous-Variable Source-Independent Quantum Random Number Generator with a Single Phase-Insensitive Detector [0.5439020425819]
Quantum random number generators (QRNGs) harness quantum mechanical unpredictability to produce true randomness.
We propose a novel CV-SI-QRNG scheme with a single phase-insensitive detector, and provide security proof based on semi-definite programming (SDP)
These results demonstrate the feasibility of our framework, paving the way for practical and simple SI-QRNG implementations.
arXiv Detail & Related papers (2024-11-22T09:26:53Z) - Source-independent quantum random number generators with integrated
silicon photonics [12.813953462597603]
Source-independent quantum random number generators (SI-QRNGs) can offer true randomness.
Silicon photonics shows great promise for QRNG due to its benefits in miniaturization, cost-effective device manufacturing, and compatibility with CMOS microelectronics.
arXiv Detail & Related papers (2023-12-28T13:25:33Z) - Quantum Conformal Prediction for Reliable Uncertainty Quantification in
Quantum Machine Learning [47.991114317813555]
Quantum models implement implicit probabilistic predictors that produce multiple random decisions for each input through measurement shots.
This paper proposes to leverage such randomness to define prediction sets for both classification and regression that provably capture the uncertainty of the model.
arXiv Detail & Related papers (2023-04-06T22:05:21Z) - Importance sampling for stochastic quantum simulations [68.8204255655161]
We introduce the qDrift protocol, which builds random product formulas by sampling from the Hamiltonian according to the coefficients.
We show that the simulation cost can be reduced while achieving the same accuracy, by considering the individual simulation cost during the sampling stage.
Results are confirmed by numerical simulations performed on a lattice nuclear effective field theory.
arXiv Detail & Related papers (2022-12-12T15:06:32Z) - Testing randomness of series generated in Bell's experiment [62.997667081978825]
We use a toy fiber optic based setup to generate binary series, and evaluate their level of randomness according to Ville principle.
Series are tested with a battery of standard statistical indicators, Hurst, Kolmogorov complexity, minimum entropy, Takensarity dimension of embedding, and Augmented Dickey Fuller and Kwiatkowski Phillips Schmidt Shin to check station exponent.
The level of randomness of series obtained by applying Toeplitz extractor to rejected series is found to be indistinguishable from the level of non-rejected raw ones.
arXiv Detail & Related papers (2022-08-31T17:39:29Z) - Provably-secure quantum randomness expansion with uncharacterised
homodyne detection [12.166727618150196]
Quantum random number generators (QRNGs) are able to generate numbers that are certifiably random, even to an agent who holds some side-information.
Such systems typically require that the elements being used are precisely calibrated and validly certified for a credible security analysis.
We propose, design and experimentally demonstrate a QRNG protocol that completely removes the calibration requirement for the measurement device.
arXiv Detail & Related papers (2022-06-08T03:13:25Z) - Certified quantum random number generator based on single-photon
entanglement [0.0]
We show a new certified quantum random number generator based on momentum-polarization entangled single photon states.
A semi-device-independent modeling of the photonic quantum random number generator is developed.
Our results show that a simple optical implementation combined with an accurate modeling provide an entanglement-based high-security quantum random number generator.
arXiv Detail & Related papers (2021-04-09T16:01:25Z) - Single photon randomness originating from the symmetry of dipole
emission and the unpredictability of spontaneous emission [55.41644538483948]
Quantum random number generation is a key ingredient for quantum cryptography and fundamental quantum optics.
We experimentally demonstrate quantum random number generation based on the spontaneous emission process.
The scheme can be extended to random number generation by coherent single photons with potential applications in solid-state based quantum communication at room temperature.
arXiv Detail & Related papers (2021-02-18T14:07:20Z) - Generation of High-Resolution Handwritten Digits with an Ion-Trap
Quantum Computer [55.41644538483948]
We implement a quantum-circuit based generative model to learn and sample the prior distribution of a Generative Adversarial Network.
We train this hybrid algorithm on an ion-trap device based on $171$Yb$+$ ion qubits to generate high-quality images.
arXiv Detail & Related papers (2020-12-07T18:51:28Z) - Fast self-testing Quantum Random Number Generator based on homodyne
detection [0.0]
Self-testing and Semi-Device Independent protocols are becoming the preferred choice for quantum technologies.
We certify 145.5MHz of quantum random bit generation rate.
arXiv Detail & Related papers (2020-04-17T15:35:33Z) - Quantum Random Number Generation using a Solid-State Single-Photon
Source [89.24951036534168]
Quantum random number generation (QRNG) harnesses the intrinsic randomness of quantum mechanical phenomena.
We demonstrate QRNG with a quantum emitter in hexagonal boron nitride.
Our results open a new avenue to the fabrication of on-chip deterministic random number generators.
arXiv Detail & Related papers (2020-01-28T22:47:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.