論文の概要: Decoupled Sparse Priors Guided Diffusion Compression Model for Point Clouds
- arxiv url: http://arxiv.org/abs/2411.13860v1
- Date: Thu, 21 Nov 2024 05:41:35 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-22 15:18:16.539029
- Title: Decoupled Sparse Priors Guided Diffusion Compression Model for Point Clouds
- Title(参考訳): 点雲の拡散圧縮モデルにおける分離スパース先行法
- Authors: Xiaoge Zhang, Zijie Wu, Mehwish Nasim, Mingtao Feng, Ajmal Mian,
- Abstract要約: ロスシー圧縮法は、ポイントクラウドをストレージの潜在点に変換するためにオートエンコーダに依存している。
本稿では,特に高圧縮比で高い復元品質を実現するスパース先行案内手法を提案する。
- 参考スコア(独自算出の注目度): 26.32608616696905
- License:
- Abstract: Lossy compression methods rely on an autoencoder to transform a point cloud into latent points for storage, leaving the inherent redundancy of latent representations unexplored. To reduce redundancy in latent points, we propose a sparse priors guided method that achieves high reconstruction quality, especially at high compression ratios. This is accomplished by a dual-density scheme separately processing the latent points (intended for reconstruction) and the decoupled sparse priors (intended for storage). Our approach features an efficient dual-density data flow that relaxes size constraints on latent points, and hybridizes a progressive conditional diffusion model to encapsulate essential details for reconstruction within the conditions, which are decoupled hierarchically to intra-point and inter-point priors. Specifically, our method encodes the original point cloud into latent points and decoupled sparse priors through separate encoders. Latent points serve as intermediates, while sparse priors act as adaptive conditions. We then employ a progressive attention-based conditional denoiser to generate latent points conditioned on the decoupled priors, allowing the denoiser to dynamically attend to geometric and semantic cues from the priors at each encoding and decoding layer. Additionally, we integrate the local distribution into the arithmetic encoder and decoder to enhance local context modeling of the sparse points. The original point cloud is reconstructed through a point decoder. Compared to state-of-the-art, our method obtains superior rate-distortion trade-off, evidenced by extensive evaluations on the ShapeNet dataset and standard test datasets from MPEG group including 8iVFB, and Owlii.
- Abstract(参考訳): ロスシー圧縮法はオートエンコーダに頼り、点雲を記憶のための潜在点に変換し、潜在表現の固有の冗長性を未発見のまま残す。
遅延点の冗長性を低減するため,特に高い圧縮比で高い復元品質を実現するスパース事前誘導法を提案する。
これは、(復元のために意図された)潜伏点と(記憶のために意図された)分離されたスパース事前を別々に処理する二重密度スキームによって達成される。
提案手法では,遅延点のサイズ制約を緩和し,段階的条件拡散モデルをハイブリダイズし,各条件内での再現に不可欠な詳細をカプセル化し,点内および点間事前に階層的に分離する,効率的な二重密度データフローを特徴とする。
具体的には、元の点雲を潜在点にエンコードし、分離されたエンコーダを介してスパース先行を分離する。
末点が中間点として機能し、スパース先行が適応条件として機能する。
次に、プログレッシブアテンションベースの条件付きデノイザを用い、デノイザが各符号化層および復号層から幾何的および意味的なキューに動的に出席できるようにする。
さらに,局所分布を演算エンコーダとデコーダに統合し,スパース点の局所的コンテキストモデリングを強化する。
元のポイントクラウドは、ポイントデコーダを介して再構成される。
本研究では,8iVFBやOwliiを含むMPEGグループによるShapeNetデータセットと標準テストデータセットの広範な評価により,高い速度歪みトレードオフが得られることを示す。
関連論文リスト
- Fast Point Cloud Geometry Compression with Context-based Residual Coding and INR-based Refinement [19.575833741231953]
我々は、KNN法を用いて、原表面点の近傍を決定する。
条件付き確率モデルは局所幾何学に適応し、大きな速度減少をもたらす。
暗黙のニューラル表現を精製層に組み込むことで、デコーダは任意の密度で下面の点をサンプリングすることができる。
論文 参考訳(メタデータ) (2024-08-06T05:24:06Z) - Hierarchical Prior-based Super Resolution for Point Cloud Geometry
Compression [39.052583172727324]
幾何学に基づくポイントクラウド圧縮(G-PCC)は、ポイントクラウドを圧縮するために移動画像専門家グループによって開発された。
本稿では,点雲幾何学的圧縮のための階層的事前分解能超解法を提案する。
論文 参考訳(メタデータ) (2024-02-17T11:15:38Z) - Joint Learning for Scattered Point Cloud Understanding with Hierarchical Self-Distillation [34.26170741722835]
そこで本研究では,部分点雲を高速に補正し,同定するエンド・ツー・エンドアーキテクチャを提案する。
階層型自己蒸留(HSD)は任意の階層ベースの点雲法に適用できる。
論文 参考訳(メタデータ) (2023-12-28T08:51:04Z) - Point Cloud Pre-training with Diffusion Models [62.12279263217138]
我々は、ポイントクラウド拡散事前学習(PointDif)と呼ばれる新しい事前学習手法を提案する。
PointDifは、分類、セグメンテーション、検出など、さまざまな下流タスクのために、さまざまな現実世界のデータセット間で大幅に改善されている。
論文 参考訳(メタデータ) (2023-11-25T08:10:05Z) - Controllable Mesh Generation Through Sparse Latent Point Diffusion
Models [105.83595545314334]
メッシュ生成のための新しいスパース潜在点拡散モデルを設計する。
私たちの重要な洞察は、ポイントクラウドをメッシュの中間表現と見なし、代わりにポイントクラウドの分布をモデル化することです。
提案したスパース潜在点拡散モデルにより,生成品質と制御性において優れた性能が得られる。
論文 参考訳(メタデータ) (2023-03-14T14:25:29Z) - Density-preserving Deep Point Cloud Compression [72.0703956923403]
本研究では,局所密度情報を保存する新しい深部クラウド圧縮手法を提案する。
エンコーダはポイントをサンプリングし、ポイントワイドな特徴を学習し、デコーダはこれらの特徴を使ってポイントをサンプリングする。
論文 参考訳(メタデータ) (2022-04-27T03:42:15Z) - Upsampling Autoencoder for Self-Supervised Point Cloud Learning [11.19408173558718]
人間のアノテーションを使わずに、ポイントクラウド学習のための自己教師付き事前学習モデルを提案する。
アップサンプリング操作は、ポイントクラウドの高レベルセマンティック情報と低レベル幾何情報の両方を捕捉することをネットワークに促す。
我々のUAEは、形状分類、部分分割、点雲アップサンプリングタスクにおいて、従来の最先端手法よりも優れています。
論文 参考訳(メタデータ) (2022-03-21T07:20:37Z) - Point Set Self-Embedding [63.23565826873297]
この研究は、高密度な点の情報を視覚的だが知覚不可能な形でスペーサーバージョンにエンコードする、点集合自己埋め込みの革新的な方法を示す。
自己埋め込みポイントセットは、通常のダウンサンプルとして機能し、モバイルデバイス上で効率的に視覚化することができる。
リモートサーバ上で詳細な分析を行うために,自己埋め込み情報を活用して,元のポイントセットを完全に復元する。
論文 参考訳(メタデータ) (2022-02-28T07:03:33Z) - SPU-Net: Self-Supervised Point Cloud Upsampling by Coarse-to-Fine
Reconstruction with Self-Projection Optimization [52.20602782690776]
実際のスキャンされたスパースデータからトレーニング用の大規模なペアリングスパーススキャンポイントセットを得るのは高価で面倒です。
本研究では,SPU-Net と呼ばれる自己監視型点群アップサンプリングネットワークを提案する。
本研究では,合成データと実データの両方について様々な実験を行い,最先端の教師付き手法と同等の性能が得られることを示す。
論文 参考訳(メタデータ) (2020-12-08T14:14:09Z) - Point2Mesh: A Self-Prior for Deformable Meshes [83.31236364265403]
本稿では,入力点雲から表面メッシュを再構築する技術であるPoint2Meshを紹介する。
自己優先型は、ディープニューラルネットワークの重み内の単一の形状から幾何的繰り返しをカプセル化する。
ここでは,Point2Meshが所望の解に収束することを示す。
論文 参考訳(メタデータ) (2020-05-22T10:01:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。