Knowledge-Driven Feature Selection and Engineering for Genotype Data with Large Language Models
- URL: http://arxiv.org/abs/2410.01795v1
- Date: Wed, 2 Oct 2024 17:53:08 GMT
- Title: Knowledge-Driven Feature Selection and Engineering for Genotype Data with Large Language Models
- Authors: Joseph Lee, Shu Yang, Jae Young Baik, Xiaoxi Liu, Zhen Tan, Dawei Li, Zixuan Wen, Bojian Hou, Duy Duong-Tran, Tianlong Chen, Li Shen,
- Abstract summary: We develop FREEFORM, Free-flow Reasoning and Ensembling for Enhanced Feature Output and Robust Modeling.
FreeFORM is available as open-source framework at GitHub: https://github.com/PennShenLab/FREEFORM.
- Score: 35.084222907099644
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Predicting phenotypes with complex genetic bases based on a small, interpretable set of variant features remains a challenging task. Conventionally, data-driven approaches are utilized for this task, yet the high dimensional nature of genotype data makes the analysis and prediction difficult. Motivated by the extensive knowledge encoded in pre-trained LLMs and their success in processing complex biomedical concepts, we set to examine the ability of LLMs in feature selection and engineering for tabular genotype data, with a novel knowledge-driven framework. We develop FREEFORM, Free-flow Reasoning and Ensembling for Enhanced Feature Output and Robust Modeling, designed with chain-of-thought and ensembling principles, to select and engineer features with the intrinsic knowledge of LLMs. Evaluated on two distinct genotype-phenotype datasets, genetic ancestry and hereditary hearing loss, we find this framework outperforms several data-driven methods, particularly on low-shot regimes. FREEFORM is available as open-source framework at GitHub: https://github.com/PennShenLab/FREEFORM.
Related papers
- Generative Fuzzy System for Sequence Generation [16.20988290308979]
We introduce the fuzzy system, a classical modeling method that combines data and knowledge-driven mechanisms, to generative tasks.
We propose an end-to-end GenFS-based model for sequence generation, called FuzzyS2S.
A series of experimental studies were conducted on 12 datasets, covering three distinct categories of generative tasks.
arXiv Detail & Related papers (2024-11-21T06:03:25Z) - Combining Domain-Specific Models and LLMs for Automated Disease Phenotyping from Survey Data [0.0]
This pilot study investigated the potential of combining a domain-specific model, BERN2, with large language models (LLMs) to enhance automated phenotyping from research survey data.
We employed BERN2, a named entity recognition and normalization model, to extract information from the ORIGINS survey data.
BERN2 demonstrated high performance in extracting and normalizing disease mentions, and the integration of LLMs, particularly with Few Shot Inference and RAG orchestration, further improved accuracy.
arXiv Detail & Related papers (2024-10-28T02:55:03Z) - LSTM Autoencoder-based Deep Neural Networks for Barley Genotype-to-Phenotype Prediction [16.99449054451577]
We propose a new LSTM autoencoder-based model for barley genotype-to-phenotype prediction, specifically for flowering time and grain yield estimation.
Our model outperformed the other baseline methods, demonstrating its potential in handling complex high-dimensional agricultural datasets.
arXiv Detail & Related papers (2024-07-21T16:07:43Z) - Geneverse: A collection of Open-source Multimodal Large Language Models for Genomic and Proteomic Research [20.285114234576298]
Large language models (LLMs) are promising for biomedical and healthcare research.
We propose a collection of finetuned LLMs and multimodal LLMs (MLLMs) for three novel tasks in genomics and proteomic research.
The models in Geneverse are trained and evaluated based on domain-specific datasets.
We demonstrate that adapted LLMs and MLLMs perform well for these tasks and may outperform closed-source large-scale models.
arXiv Detail & Related papers (2024-06-21T14:19:10Z) - GenBench: A Benchmarking Suite for Systematic Evaluation of Genomic Foundation Models [56.63218531256961]
We introduce GenBench, a benchmarking suite specifically tailored for evaluating the efficacy of Genomic Foundation Models.
GenBench offers a modular and expandable framework that encapsulates a variety of state-of-the-art methodologies.
We provide a nuanced analysis of the interplay between model architecture and dataset characteristics on task-specific performance.
arXiv Detail & Related papers (2024-06-01T08:01:05Z) - TSGM: A Flexible Framework for Generative Modeling of Synthetic Time Series [61.436361263605114]
Time series data are often scarce or highly sensitive, which precludes the sharing of data between researchers and industrial organizations.
We introduce Time Series Generative Modeling (TSGM), an open-source framework for the generative modeling of synthetic time series.
arXiv Detail & Related papers (2023-05-19T10:11:21Z) - Select-ProtoNet: Learning to Select for Few-Shot Disease Subtype
Prediction [55.94378672172967]
We focus on few-shot disease subtype prediction problem, identifying subgroups of similar patients.
We introduce meta learning techniques to develop a new model, which can extract the common experience or knowledge from interrelated clinical tasks.
Our new model is built upon a carefully designed meta-learner, called Prototypical Network, that is a simple yet effective meta learning machine for few-shot image classification.
arXiv Detail & Related papers (2020-09-02T02:50:30Z) - Machine Learning in Nano-Scale Biomedical Engineering [77.75587007080894]
We review the existing research regarding the use of machine learning in nano-scale biomedical engineering.
The main challenges that can be formulated as ML problems are classified into the three main categories.
For each of the presented methodologies, special emphasis is given to its principles, applications, and limitations.
arXiv Detail & Related papers (2020-08-05T15:45:54Z) - A Trainable Optimal Transport Embedding for Feature Aggregation and its
Relationship to Attention [96.77554122595578]
We introduce a parametrized representation of fixed size, which embeds and then aggregates elements from a given input set according to the optimal transport plan between the set and a trainable reference.
Our approach scales to large datasets and allows end-to-end training of the reference, while also providing a simple unsupervised learning mechanism with small computational cost.
arXiv Detail & Related papers (2020-06-22T08:35:58Z) - Modeling Shared Responses in Neuroimaging Studies through MultiView ICA [94.31804763196116]
Group studies involving large cohorts of subjects are important to draw general conclusions about brain functional organization.
We propose a novel MultiView Independent Component Analysis model for group studies, where data from each subject are modeled as a linear combination of shared independent sources plus noise.
We demonstrate the usefulness of our approach first on fMRI data, where our model demonstrates improved sensitivity in identifying common sources among subjects.
arXiv Detail & Related papers (2020-06-11T17:29:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.