論文の概要: Sli2Vol+: Segmenting 3D Medical Images Based on an Object Estimation Guided Correspondence Flow Network
- arxiv url: http://arxiv.org/abs/2411.13873v1
- Date: Thu, 21 Nov 2024 06:15:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-22 15:19:11.761448
- Title: Sli2Vol+: Segmenting 3D Medical Images Based on an Object Estimation Guided Correspondence Flow Network
- Title(参考訳): Sli2Vol+:オブジェクト推定対応フローネットワークに基づく3次元医用画像のセグメンテーション
- Authors: Delin An, Pengfei Gu, Milan Sonka, Chaoli Wang, Danny Z. Chen,
- Abstract要約: 3次元医用画像のアノテーション負担を軽減するために,マスク伝搬DL法を開発した。
しかし, これらの手法は, 復元誤差のスライス間伝播による誤差蓄積の傾向にある。
本研究では,3次元医用画像中の解剖学的構造を1つの注記スライスで分割するSSFを提案する。
- 参考スコア(独自算出の注目度): 16.909079894023293
- License:
- Abstract: Deep learning (DL) methods have shown remarkable successes in medical image segmentation, often using large amounts of annotated data for model training. However, acquiring a large number of diverse labeled 3D medical image datasets is highly difficult and expensive. Recently, mask propagation DL methods were developed to reduce the annotation burden on 3D medical images. For example, Sli2Vol~\cite{yeung2021sli2vol} proposed a self-supervised framework (SSF) to learn correspondences by matching neighboring slices via slice reconstruction in the training stage; the learned correspondences were then used to propagate a labeled slice to other slices in the test stage. But, these methods are still prone to error accumulation due to the inter-slice propagation of reconstruction errors. Also, they do not handle discontinuities well, which can occur between consecutive slices in 3D images, as they emphasize exploiting object continuity. To address these challenges, in this work, we propose a new SSF, called \proposed, {for segmenting any anatomical structures in 3D medical images using only a single annotated slice per training and testing volume.} Specifically, in the training stage, we first propagate an annotated 2D slice of a training volume to the other slices, generating pseudo-labels (PLs). Then, we develop a novel Object Estimation Guided Correspondence Flow Network to learn reliable correspondences between consecutive slices and corresponding PLs in a self-supervised manner. In the test stage, such correspondences are utilized to propagate a single annotated slice to the other slices of a test volume. We demonstrate the effectiveness of our method on various medical image segmentation tasks with different datasets, showing better generalizability across different organs, modalities, and modals. Code is available at \url{https://github.com/adlsn/Sli2Volplus}
- Abstract(参考訳): 深層学習(DL)法は医用画像セグメンテーションにおいて顕著な成功を収めており、しばしばモデルトレーニングに大量の注釈付きデータを用いている。
しかし,多種多様なラベル付き3D画像データセットの取得は非常に困難で費用がかかる。
近年,3次元医用画像のアノテーション負担を軽減するために,マスク伝搬DL法が開発されている。
例えば、Sli2Vol~\cite{yeung2021sli2vol} は、訓練段階のスライス再構成によって近隣のスライスをマッチングして対応を学習するための自己教師付きフレームワーク (SSF) を提案し、学習された対応は、テスト段階の他のスライスにラベル付きスライスを伝達するために使用された。
しかし, これらの手法は, 復元誤差のスライス間伝播による誤差蓄積の傾向にある。
また、3D画像の連続スライスの間に発生する不連続性をうまく扱えない。
これらの課題に対処するために,本研究では,1つの注記スライスとテストボリュームのみを用いて,解剖学的構造を3次元医用画像にセグメント化するための,‘proposed’と呼ばれる新しいSFを提案する。
具体的には、トレーニング段階では、まずトレーニングボリュームの注釈付き2Dスライスを他のスライスに伝達し、擬似ラベル(PL)を生成する。
そこで我々は,連続スライスと対応するPL間の信頼性の高い対応を自己教師型で学習する,新しいオブジェクト推定対応フローネットワークを開発した。
試験段階では、このような対応を利用して、1つの注釈スライスをテストボリュームの他のスライスに伝搬する。
提案手法は,異なるデータセットを用いた様々な医用画像分割作業における有効性を示すとともに,異なる臓器,モダリティ,モダリティに対してより優れた一般化性を示す。
コードは \url{https://github.com/adlsn/Sli2Volplus} で入手できる。
関連論文リスト
- Open-Vocabulary 3D Semantic Segmentation with Text-to-Image Diffusion Models [57.37244894146089]
Diff2Sceneは、テキスト画像生成モデルからの凍結表現と、サルエント・アウェアと幾何学的アウェアマスクを併用して、オープンな3次元セマンティックセマンティックセグメンテーションと視覚的グラウンドニングタスクに活用する。
競争ベースラインを上回り、最先端の手法よりも大幅に改善されていることを示す。
論文 参考訳(メタデータ) (2024-07-18T16:20:56Z) - Label-Efficient 3D Brain Segmentation via Complementary 2D Diffusion Models with Orthogonal Views [10.944692719150071]
相補的な2次元拡散モデルを用いた新しい3次元脳分割法を提案する。
私たちのゴールは、個々の主題に対して完全なラベルを必要とせずに、信頼性の高いセグメンテーション品質を達成することです。
論文 参考訳(メタデータ) (2024-07-17T06:14:53Z) - Cross-Dimensional Medical Self-Supervised Representation Learning Based on a Pseudo-3D Transformation [68.60747298865394]
擬似3D変換(CDSSL-P3D)に基づく新しい三次元SSLフレームワークを提案する。
具体的には、2D画像を3Dデータに整合したフォーマットに変換するim2colアルゴリズムに基づく画像変換を提案する。
この変換は2次元および3次元データのシームレスな統合を可能にし、3次元医用画像解析のための相互教師あり学習を容易にする。
論文 参考訳(メタデータ) (2024-06-03T02:57:25Z) - Promise:Prompt-driven 3D Medical Image Segmentation Using Pretrained
Image Foundation Models [13.08275555017179]
単点プロンプトのみを用いたプロンプト駆動型3次元医用画像分割モデルProMISeを提案する。
今回,大腸癌と膵腫瘍の2つの領域に分布する2つのパブリックデータセットについて検討した。
論文 参考訳(メタデータ) (2023-10-30T16:49:03Z) - OneSeg: Self-learning and One-shot Learning based Single-slice
Annotation for 3D Medical Image Segmentation [36.50258132379276]
本稿では,各3次元画像の1つのスライスに注釈を付けることで,3次元医用画像セグメンテーションのための自己学習とワンショット学習に基づくフレームワークを提案する。
提案手法は,(1)3次元画像中の2次元スライス間の意味的対応を学習する再構成ネットワークの自己学習,(2)1ショット手動アノテーションのための1つのスライスの代表的選択である。
我々の新しいフレームワークは、完全に教師された手法と比較して1%未満のアノテートデータで同等のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2023-09-24T15:35:58Z) - Joint Self-Supervised Image-Volume Representation Learning with
Intra-Inter Contrastive Clustering [31.52291149830299]
自己教師付き学習は、ラベル付きデータから特徴表現を学習することで、ラベル付きトレーニングサンプルの欠如を克服することができる。
現在の医療分野におけるSSL技術のほとんどは、2D画像または3Dボリュームのために設計されている。
本研究では2次元および3次元データモダリティの教師なし共同学習のための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2022-12-04T18:57:44Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
本稿では,2ストリームグラフ畳み込みネットワーク(TSGCN)を提案する。
TSGCNは3次元歯(表面)セグメンテーションにおいて最先端の方法よりも優れています。
論文 参考訳(メタデータ) (2022-04-19T10:41:09Z) - Using the Order of Tomographic Slices as a Prior for Neural Networks
Pre-Training [1.1470070927586016]
ボリュームの代わりにスライス上でSortingLossを事前学習する手法を提案する。
ボリュームではなくスライスで事前トレーニングを行うので、スライスのスパースセットでモデルを微調整することができる。
提案手法はSimCLRと同等に動作し、2倍高速に動作し、1.5倍少ないメモリを必要とすることを示す。
論文 参考訳(メタデータ) (2022-03-17T14:58:15Z) - Unsupervised Domain Adaptation with Contrastive Learning for OCT
Segmentation [49.59567529191423]
本稿では,新しい未ラベル領域からのボリューム画像のセグメンテーションのための,新しい半教師付き学習フレームワークを提案する。
教師付き学習とコントラスト学習を併用し、3次元の近傍スライス間の類似性を利用したコントラストペア方式を導入する。
論文 参考訳(メタデータ) (2022-03-07T19:02:26Z) - TSGCNet: Discriminative Geometric Feature Learning with Two-Stream
GraphConvolutional Network for 3D Dental Model Segmentation [141.2690520327948]
2流グラフ畳み込みネットワーク(TSGCNet)を提案し、異なる幾何学的特性から多視点情報を学ぶ。
3次元口腔内スキャナーで得られた歯科モデルのリアルタイムデータセットを用いてTSGCNetの評価を行った。
論文 参考訳(メタデータ) (2020-12-26T08:02:56Z) - Fed-Sim: Federated Simulation for Medical Imaging [131.56325440976207]
本稿では、2つの学習可能なニューラルモジュールからなる物理駆動型生成手法を提案する。
データ合成フレームワークは、複数のデータセットの下流セグメンテーション性能を改善する。
論文 参考訳(メタデータ) (2020-09-01T19:17:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。