Enhancing Phishing Email Identification with Large Language Models
- URL: http://arxiv.org/abs/2502.04759v1
- Date: Fri, 07 Feb 2025 08:45:50 GMT
- Title: Enhancing Phishing Email Identification with Large Language Models
- Authors: Catherine Lee,
- Abstract summary: We study the efficacy of large language models (LLMs) in detecting phishing emails.
Experiments show that the LLM achieves a high accuracy rate at high precision.
- Score: 0.40792653193642503
- License:
- Abstract: Phishing has long been a common tactic used by cybercriminals and continues to pose a significant threat in today's digital world. When phishing attacks become more advanced and sophisticated, there is an increasing need for effective methods to detect and prevent them. To address the challenging problem of detecting phishing emails, researchers have developed numerous solutions, in particular those based on machine learning (ML) algorithms. In this work, we take steps to study the efficacy of large language models (LLMs) in detecting phishing emails. The experiments show that the LLM achieves a high accuracy rate at high precision; importantly, it also provides interpretable evidence for the decisions.
Related papers
- PhishIntel: Toward Practical Deployment of Reference-Based Phishing Detection [33.98293686647553]
PhishIntel is an end-to-end phishing detection system for real-world deployment.
It segmenting the detection process into two distinct tasks: a fast task that checks against local blacklists and result cache, and a slow task that conducts online blacklist verification, URL crawling, and webpage analysis.
This fast-slow task system architecture ensures low response latency while retaining the robust detection capabilities of reference-based phishing detectors.
arXiv Detail & Related papers (2024-12-12T08:33:39Z) - Next-Generation Phishing: How LLM Agents Empower Cyber Attackers [10.067883724547182]
The escalating threat of phishing emails has become increasingly sophisticated with the rise of Large Language Models (LLMs)
As attackers exploit LLMs to craft more convincing and evasive phishing emails, it is crucial to assess the resilience of current phishing defenses.
We conduct a comprehensive evaluation of traditional phishing detectors, such as Gmail Spam Filter, Apache SpamAssassin, and Proofpoint, as well as machine learning models like SVM, Logistic Regression, and Naive Bayes.
Our results reveal notable declines in detection accuracy for rephrased emails across all detectors, highlighting critical weaknesses in current phishing defenses.
arXiv Detail & Related papers (2024-11-21T06:20:29Z) - Adapting to Cyber Threats: A Phishing Evolution Network (PEN) Framework for Phishing Generation and Analyzing Evolution Patterns using Large Language Models [10.58220151364159]
Phishing remains a pervasive cyber threat, as attackers craft deceptive emails to lure victims into revealing sensitive information.
While Artificial Intelligence (AI) has become a key component in defending against phishing attacks, these approaches face critical limitations.
We propose the Phishing Evolution Network (PEN), a framework leveraging large language models (LLMs) and adversarial training mechanisms to continuously generate high quality and realistic diverse phishing samples.
arXiv Detail & Related papers (2024-11-18T09:03:51Z) - Automated Phishing Detection Using URLs and Webpages [35.66275851732625]
This project addresses the constraints of traditional reference-based phishing detection by developing an LLM agent framework.
This agent harnesses Large Language Models to actively fetch and utilize online information.
Our approach has achieved with accuracy of 0.945, significantly outperforms the existing solution(DynaPhish) by 0.445.
arXiv Detail & Related papers (2024-08-03T05:08:27Z) - Evaluating the Efficacy of Large Language Models in Identifying Phishing Attempts [2.6012482282204004]
Phishing, a prevalent cybercrime tactic for decades, remains a significant threat in today's digital world.
This paper aims to analyze the effectiveness of 15 Large Language Models (LLMs) in detecting phishing attempts.
arXiv Detail & Related papers (2024-04-23T19:55:18Z) - KnowPhish: Large Language Models Meet Multimodal Knowledge Graphs for Enhancing Reference-Based Phishing Detection [36.014171641453615]
We propose an automated knowledge collection pipeline, containing 20k brands with rich information about each brand.
KnowPhish can be used to boost the performance of existing reference-based phishing detectors.
Our resulting multimodal phishing detection approach, KnowPhish Detector, can detect phishing webpages with or without logos.
arXiv Detail & Related papers (2024-03-04T17:38:32Z) - ChatSpamDetector: Leveraging Large Language Models for Effective Phishing Email Detection [2.3999111269325266]
This study introduces ChatSpamDetector, a system that uses large language models (LLMs) to detect phishing emails.
By converting email data into a prompt suitable for LLM analysis, the system provides a highly accurate determination of whether an email is phishing or not.
We conducted an evaluation using a comprehensive phishing email dataset and compared our system to several LLMs and baseline systems.
arXiv Detail & Related papers (2024-02-28T06:28:15Z) - An Explainable Transformer-based Model for Phishing Email Detection: A
Large Language Model Approach [2.8282906214258805]
Phishing email is a serious cyber threat that tries to deceive users by sending false emails with the intention of stealing confidential information or causing financial harm.
Despite extensive academic research, phishing detection remains an ongoing and formidable challenge in the cybersecurity landscape.
We present an optimized, fine-tuned transformer-based DistilBERT model designed for the detection of phishing emails.
arXiv Detail & Related papers (2024-02-21T15:23:21Z) - Prompted Contextual Vectors for Spear-Phishing Detection [41.26408609344205]
Spear-phishing attacks present a significant security challenge.
We propose a detection approach based on a novel document vectorization method.
Our method achieves a 91% F1 score in identifying LLM-generated spear-phishing emails.
arXiv Detail & Related papers (2024-02-13T09:12:55Z) - Deep convolutional forest: a dynamic deep ensemble approach for spam
detection in text [219.15486286590016]
This paper introduces a dynamic deep ensemble model for spam detection that adjusts its complexity and extracts features automatically.
As a result, the model achieved high precision, recall, f1-score and accuracy of 98.38%.
arXiv Detail & Related papers (2021-10-10T17:19:37Z) - Phishing and Spear Phishing: examples in Cyber Espionage and techniques
to protect against them [91.3755431537592]
Phishing attacks have become the most used technique in the online scams, initiating more than 91% of cyberattacks, from 2012 onwards.
This study reviews how Phishing and Spear Phishing attacks are carried out by the phishers, through 5 steps which magnify the outcome.
arXiv Detail & Related papers (2020-05-31T18:10:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.