論文の概要: Quantization without Tears
- arxiv url: http://arxiv.org/abs/2411.13918v2
- Date: Fri, 22 Nov 2024 02:17:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-25 12:05:43.063142
- Title: Quantization without Tears
- Title(参考訳): ティール無しの量子化
- Authors: Minghao Fu, Hao Yu, Jie Shao, Junjie Zhou, Ke Zhu, Jianxin Wu,
- Abstract要約: QwT(Quantization without Tears)は、量子化速度、精度、単純さ、一般化性を同時に達成する手法である。
QwTは、量子化中の情報損失を軽減するために、軽量な追加構造を量子化ネットワークに組み込む。
様々な視覚、言語、マルチモーダルタスクにわたる広範囲な実験は、QwTが高効率かつ多目的であることを示した。
- 参考スコア(独自算出の注目度): 26.5790668319932
- License:
- Abstract: Deep neural networks, while achieving remarkable success across diverse tasks, demand significant resources, including computation, GPU memory, bandwidth, storage, and energy. Network quantization, as a standard compression and acceleration technique, reduces storage costs and enables potential inference acceleration by discretizing network weights and activations into a finite set of integer values. However, current quantization methods are often complex and sensitive, requiring extensive task-specific hyperparameters, where even a single misconfiguration can impair model performance, limiting generality across different models and tasks. In this paper, we propose Quantization without Tears (QwT), a method that simultaneously achieves quantization speed, accuracy, simplicity, and generality. The key insight of QwT is to incorporate a lightweight additional structure into the quantized network to mitigate information loss during quantization. This structure consists solely of a small set of linear layers, keeping the method simple and efficient. More importantly, it provides a closed-form solution, allowing us to improve accuracy effortlessly under 2 minutes. Extensive experiments across various vision, language, and multimodal tasks demonstrate that QwT is both highly effective and versatile. In fact, our approach offers a robust solution for network quantization that combines simplicity, accuracy, and adaptability, which provides new insights for the design of novel quantization paradigms.
- Abstract(参考訳): ディープニューラルネットワークは、さまざまなタスクで顕著な成功を収める一方で、計算、GPUメモリ、帯域幅、ストレージ、エネルギーといった重要なリソースを必要としている。
ネットワーク量子化は、標準的な圧縮および加速技術として、ストレージコストを削減し、ネットワーク重みとアクティベーションを有限個の整数値に識別することで、潜在的な推論加速を可能にする。
しかし、現在の量子化法はしばしば複雑でセンシティブであり、1つの設定ミスでさえモデル性能を損なうことがあり、異なるモデルやタスクの一般性を制限している。
本稿では,量子化速度,精度,単純さ,汎用性を同時に実現する方法であるQwT(Quantization without Tears)を提案する。
QwTの重要な洞察は、量子化時の情報損失を軽減するために、軽量な追加構造を量子化ネットワークに組み込むことである。
この構造は、単に小さな線形層で構成され、メソッドをシンプルかつ効率的に保ちます。
さらに重要なのは、クローズドフォームのソリューションを提供することで、精度を2分以内で改善できます。
様々な視覚、言語、マルチモーダルタスクにわたる広範囲な実験は、QwTが高効率かつ多目的であることを示した。
実際、我々のアプローチは、単純さ、正確性、適応性を組み合わせたネットワーク量子化のための堅牢なソリューションを提供し、新しい量子化パラダイムの設計のための新しい洞察を提供する。
関連論文リスト
- Gradient-based Automatic Mixed Precision Quantization for Neural Networks On-Chip [0.9187138676564589]
本稿では,革新的な量子化学習手法である高粒度量子化(HGQ)を提案する。
HGQは、勾配降下によって最適化できるようにすることで、重量当たりおよび活動当たりの精度を微調整する。
このアプローチは、演算演算が可能なハードウェア上で、超低レイテンシと低電力ニューラルネットワークを実現する。
論文 参考訳(メタデータ) (2024-05-01T17:18:46Z) - On-Chip Hardware-Aware Quantization for Mixed Precision Neural Networks [52.97107229149988]
エッジデバイス上でハードウェア対応の混合精度量子化を行うOn-Chipハードウェア・アウェア量子化フレームワークを提案する。
このパイプラインは、量子化プロセスが量子化演算子の実際のハードウェア効率を知覚することを可能にする。
精度測定のために,マルチチップシナリオにおける演算子の精度への影響を効果的に推定するMask-Guided Quantization Estimation技術を提案する。
論文 参考訳(メタデータ) (2023-09-05T04:39:34Z) - A Practical Mixed Precision Algorithm for Post-Training Quantization [15.391257986051249]
混合精度量子化は、均一な量子化よりも優れた性能効率トレードオフを見つけるための有望な解である。
簡単な学習後混合精度アルゴリズムを提案する。
我々は,同質のビット幅等価値よりも精度と効率のトレードオフが良い混合精度ネットワークを見つけることができることを示す。
論文 参考訳(メタデータ) (2023-02-10T17:47:54Z) - Vertical Layering of Quantized Neural Networks for Heterogeneous
Inference [57.42762335081385]
量子化モデル全体を1つのモデルにカプセル化するための,ニューラルネットワーク重みの新しい垂直層表現について検討する。
理論的には、1つのモデルのトレーニングとメンテナンスのみを必要としながら、オンデマンドサービスの正確なネットワークを達成できます。
論文 参考訳(メタデータ) (2022-12-10T15:57:38Z) - Green, Quantized Federated Learning over Wireless Networks: An
Energy-Efficient Design [68.86220939532373]
有限精度レベルは、固定精度フォーマットで重みとアクティベーションを定量化する量子ニューラルネットワーク(QNN)を使用して取得される。
提案するFLフレームワークは,ベースラインFLアルゴリズムと比較して,収束までのエネルギー消費量を最大70%削減することができる。
論文 参考訳(メタデータ) (2022-07-19T16:37:24Z) - BiTAT: Neural Network Binarization with Task-dependent Aggregated
Transformation [116.26521375592759]
量子化は、与えられたニューラルネットワークの高精度ウェイトとアクティベーションを、メモリ使用量と計算量を減らすために、低精度ウェイト/アクティベーションに変換することを目的としている。
コンパクトに設計されたバックボーンアーキテクチャの極端量子化(1ビットの重み/1ビットのアクティベーション)は、深刻な性能劣化をもたらす。
本稿では,性能劣化を効果的に緩和する新しいQAT法を提案する。
論文 参考訳(メタデータ) (2022-07-04T13:25:49Z) - Understanding and Overcoming the Challenges of Efficient Transformer
Quantization [17.05322956052278]
トランスフォーマーベースのアーキテクチャは、幅広い自然言語処理タスクのデファクト標準モデルとなっている。
しかしながら、メモリフットプリントと高いレイテンシは、リソース制限されたデバイスへの効率的なデプロイメントと推論を禁止している。
変換器にはユニークな量子化の課題があり、すなわち、低ビットの固定点フォーマットで表すのが難しいハイダイナミックなアクティベーション範囲があることが示される。
論文 参考訳(メタデータ) (2021-09-27T10:57:18Z) - Cluster-Promoting Quantization with Bit-Drop for Minimizing Network
Quantization Loss [61.26793005355441]
クラスタ・プロモーティング・量子化(CPQ)は、ニューラルネットワークに最適な量子化グリッドを見つける。
DropBitsは、ニューロンの代わりにランダムにビットをドロップする標準のドロップアウト正規化を改訂する新しいビットドロップ技術である。
本手法を様々なベンチマークデータセットとネットワークアーキテクチャ上で実験的に検証する。
論文 参考訳(メタデータ) (2021-09-05T15:15:07Z) - One Model for All Quantization: A Quantized Network Supporting Hot-Swap
Bit-Width Adjustment [36.75157407486302]
多様なビット幅をサポートする全量子化のためのモデルを訓練する手法を提案する。
重みの多様性を高めるためにウェーブレット分解と再構成を用いる。
同じ精度で訓練された専用モデルに匹敵する精度が得られる。
論文 参考訳(メタデータ) (2021-05-04T08:10:50Z) - Training Multi-bit Quantized and Binarized Networks with A Learnable
Symmetric Quantizer [1.9659095632676098]
リソース制約のあるデバイスやクラウドプラットフォームにそれらをデプロイするには、ディープニューラルネットワークの重み付けとアクティベーションの定量化が不可欠だ。
双対化は量子化の特別な場合であるが、この極端な場合はしばしばいくつかの訓練の困難をもたらす。
双対化の困難を克服するため,uniq と呼ばれる統一量子化フレームワークを開発した。
論文 参考訳(メタデータ) (2021-04-01T02:33:31Z) - Fully Quantized Image Super-Resolution Networks [81.75002888152159]
効率と精度を両立させるためのフル量子化画像超解像フレームワーク(FQSR)を提案する。
我々は、SRResNet、SRGAN、EDSRを含む複数の主流超解像アーキテクチャに量子化スキームを適用した。
低ビット量子化を用いたFQSRは、5つのベンチマークデータセットの完全精度と比較すると、パー性能で実現できる。
論文 参考訳(メタデータ) (2020-11-29T03:53:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。