論文の概要: Neuromorphic Attitude Estimation and Control
- arxiv url: http://arxiv.org/abs/2411.13945v1
- Date: Thu, 21 Nov 2024 08:54:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-22 15:17:59.775976
- Title: Neuromorphic Attitude Estimation and Control
- Title(参考訳): ニューロモルフィックな姿勢推定と制御
- Authors: Stein Stroobants, Christophe de Wagter, Guido C. H. E. De Croon,
- Abstract要約: 本研究では、スパイキングニューラルネットワーク(SNN)を用いた最初のニューロモルフィック制御システムを提案する。
そこで本手法を低レベル姿勢推定・制御に応用し,SNNを小さなクラジフリー上に配置する。
我々の研究は、高エネルギー効率で低遅延のニューロモルフィックオートパイロットの基礎となる、ニューロモルフィック・エンド・ツー・エンド制御の実現可能性を示している。
- 参考スコア(独自算出の注目度): 17.895261339368815
- License:
- Abstract: The real-world application of small drones is mostly hampered by energy limitations. Neuromorphic computing promises extremely energy-efficient AI for autonomous flight, but is still challenging to train and deploy on real robots. In order to reap the maximal benefits from neuromorphic computing, it is desired to perform all autonomy functions end-to-end on a single neuromorphic chip, from low-level attitude control to high-level navigation. This research presents the first neuromorphic control system using a spiking neural network (SNN) to effectively map a drone's raw sensory input directly to motor commands. We apply this method to low-level attitude estimation and control for a quadrotor, deploying the SNN on a tiny Crazyflie. We propose a modular SNN, separately training and then merging estimation and control sub-networks. The SNN is trained with imitation learning, using a flight dataset of sensory-motor pairs. Post-training, the network is deployed on the Crazyflie, issuing control commands from sensor inputs at $500$Hz. Furthermore, for the training procedure we augmented training data by flying a controller with additional excitation and time-shifting the target data to enhance the predictive capabilities of the SNN. On the real drone the perception-to-control SNN tracks attitude commands with an average error of $3$ degrees, compared to $2.5$ degrees for the regular flight stack. We also show the benefits of the proposed learning modifications for reducing the average tracking error and reducing oscillations. Our work shows the feasibility of performing neuromorphic end-to-end control, laying the basis for highly energy-efficient and low-latency neuromorphic autopilots.
- Abstract(参考訳): 小型ドローンの現実的な応用は、主にエネルギーの制限によって妨げられている。
ニューロモルフィックコンピューティングは、自律飛行のための極めてエネルギー効率のよいAIを約束するが、実際のロボットの訓練と展開は依然として難しい。
ニューロモルフィック・コンピューティングの最大の利点を享受するためには、低レベルの姿勢制御から高レベルのナビゲーションに至るまで、単一のニューロモルフィック・チップ上で全ての自律機能を実行することが望まれる。
本研究では、スパイキングニューラルネットワーク(SNN)を用いて、ドローンの生の感覚入力を直接モーターコマンドにマッピングする最初のニューロモルフィック制御システムを提案する。
そこで本手法を低レベル姿勢推定・制御に応用し,SNNを小さなクラジフリー上に配置する。
我々はモジュールSNNを提案し、個別にトレーニングし、次に推定と制御サブネットワークをマージする。
SNNは、感覚と運動のペアの飛行データセットを使用して、模倣学習で訓練されている。
トレーニング後、ネットワークはCrazyflie上に展開され、センサー入力からの制御コマンドを500ドルHzで発行する。
さらに、トレーニング手順では、SNNの予測能力を高めるために、追加の励起でコントローラを飛行し、目標データをタイムシフトすることでトレーニングデータを増強する。
実際のドローンでは、知覚制御SNNは、通常のフライトスタックの2.5ドルに対して平均3ドル(約3万5000円)の誤差で姿勢コマンドを追跡する。
また,提案手法の利点として,平均追従誤差の低減と発振の低減があげられる。
我々の研究は、高エネルギー効率で低遅延のニューロモルフィックオートパイロットの基礎となる、ニューロモルフィック・エンド・ツー・エンド制御の実現可能性を示している。
関連論文リスト
- On-device Self-supervised Learning of Visual Perception Tasks aboard
Hardware-limited Nano-quadrotors [53.59319391812798]
SI50グラム以下のナノドロンは、学術と産業の両方で勢いを増している。
彼らの最も魅力的なアプリケーションは、知覚のためのディープラーニングモデルに依存している。
未知の環境にデプロイする場合、これらのモデルはドメインシフトによってパフォーマンスが低下することが多い。
本研究では,ナノドローンを用いたデバイス上での学習を初めて提案する。
論文 参考訳(メタデータ) (2024-03-06T22:04:14Z) - Fully Spiking Actor Network with Intra-layer Connections for
Reinforcement Learning [51.386945803485084]
エージェントが制御する多次元決定論的ポリシーを学習する必要があるタスクに焦点をあてる。
既存のスパイクベースのRL法は、SNNの出力として発火率を取り、完全に接続された層を通して連続的なアクション空間(つまり決定論的なポリシー)を表すように変換する。
浮動小数点行列操作を伴わない完全にスパイクするアクターネットワークを開発するため,昆虫に見られる非スパイク介在ニューロンからインスピレーションを得た。
論文 参考訳(メタデータ) (2024-01-09T07:31:34Z) - Fully neuromorphic vision and control for autonomous drone flight [5.358212984063069]
イベントベースのビジョンとスパイクニューラルネットワークは、同様の特徴を示すことを約束する。
本稿では,ドローン飛行を制御するための完全学習型ニューロモルフィックパイプラインを提案する。
結果は,1回の飛行でより小さなネットワークを実現するためのニューロモルフィックセンシングと処理の可能性を示している。
論文 参考訳(メタデータ) (2023-03-15T17:19:45Z) - Deep Neural Network Architecture Search for Accurate Visual Pose
Estimation aboard Nano-UAVs [69.19616451596342]
小型無人航空機(UAV)は、新興かつトレンドのトピックである。
我々は、新しいニューラルネットワーク探索(NAS)技術を活用し、視覚的ポーズ推定タスクのために複数の畳み込みニューラルネットワーク(CNN)を自動的に識別する。
その結果,10Hz@10mWおよび50Hz@90mWの実時間オンボード推算速度を達成しつつ,フィールド内制御誤差を32%低減し,現状を改善できた。
論文 参考訳(メタデータ) (2023-03-03T14:02:09Z) - Training Spiking Neural Networks with Local Tandem Learning [96.32026780517097]
スパイキングニューラルネットワーク(SNN)は、前者よりも生物学的に可塑性でエネルギー効率が高いことが示されている。
本稿では,局所タンデム学習(Local Tandem Learning, LTL)と呼ばれる一般化学習規則を提案する。
CIFAR-10データセット上の5つのトレーニングエポック内に高速なネットワーク収束を示すとともに,計算複雑性が低い。
論文 参考訳(メタデータ) (2022-10-10T10:05:00Z) - Learning a Single Near-hover Position Controller for Vastly Different
Quadcopters [56.37274861303324]
本稿では,クワッドコプターのための適応型ニアホバー位置制御器を提案する。
これは、非常に異なる質量、大きさ、運動定数を持つクワッドコプターに展開することができる。
また、実行中に未知の障害に迅速に適応する。
論文 参考訳(メタデータ) (2022-09-19T17:55:05Z) - Neural Moving Horizon Estimation for Robust Flight Control [6.023276947115864]
外乱の予測と反応は、四角形機の堅牢な飛行制御に不可欠である。
ニューラルネットワークによってモデル化されたMHEパラメータを自動的に調整できるニューロ移動地平線推定器(NeuroMHE)を提案する。
NeuroMHEは出力推定誤差を最大49.4%削減した最先端の推定器より優れている。
論文 参考訳(メタデータ) (2022-06-21T13:43:24Z) - Training High-Performance Low-Latency Spiking Neural Networks by
Differentiation on Spike Representation [70.75043144299168]
スパイキングニューラルネットワーク(SNN)は、ニューロモルフィックハードウェア上に実装された場合、有望なエネルギー効率のAIモデルである。
非分化性のため、SNNを効率的に訓練することは困難である。
本稿では,ハイパフォーマンスを実現するスパイク表現法(DSR)の差分法を提案する。
論文 参考訳(メタデータ) (2022-05-01T12:44:49Z) - Evolved neuromorphic radar-based altitude controller for an autonomous
open-source blimp [4.350434044677268]
本稿では,ロボット飛行船のためのSNNに基づく高度制御器を提案する。
また、SNNベースのコントローラアーキテクチャ、シミュレーション環境でネットワークをトレーニングするための進化的フレームワーク、現実とのギャップを改善するための制御戦略も提示する。
論文 参考訳(メタデータ) (2021-10-01T20:48:43Z) - Design and implementation of a parsimonious neuromorphic PID for onboard
altitude control for MAVs using neuromorphic processors [3.7384509727711923]
低レベルコントローラはしばしば無視され、ニューロモルフィックループの外にとどまる。
そこで本研究では,93個のニューロンを最小限に含む,同種で調節可能なPIDコントローラを提案する。
その結果,低レベルのニューロモルフィックコントローラの適合性は,最終的に非常に高い更新頻度で確認できた。
論文 参考訳(メタデータ) (2021-09-21T14:27:11Z) - Online-Learning Deep Neuro-Adaptive Dynamic Inversion Controller for
Model Free Control [1.3764085113103217]
ニュートラル適応コントローラは、新しい重み更新法則に基づいて訓練されたディープニューラルネットワークを特徴とする実装である。
制御器は、非線形プラントを迅速に学習することができ、追従制御問題において優れた性能を示す。
論文 参考訳(メタデータ) (2021-07-21T22:46:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。