論文の概要: Point Cloud Denoising With Fine-Granularity Dynamic Graph Convolutional Networks
- arxiv url: http://arxiv.org/abs/2411.14158v1
- Date: Thu, 21 Nov 2024 14:19:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-22 15:18:59.692403
- Title: Point Cloud Denoising With Fine-Granularity Dynamic Graph Convolutional Networks
- Title(参考訳): 細粒度動的グラフ畳み込みネットワークによるポイントクラウドのデノイング
- Authors: Wenqiang Xu, Wenrui Dai, Duoduo Xue, Ziyang Zheng, Chenglin Li, Junni Zou, Hongkai Xiong,
- Abstract要約: ノイズの摂動は、しばしば3次元の点雲を破損させ、表面の再構成、レンダリング、さらなる処理といった下流のタスクを妨げる。
本稿では,GDGCNと呼ばれる粒度動的グラフ畳み込みネットワークについて紹介する。
- 参考スコア(独自算出の注目度): 58.050130177241186
- License:
- Abstract: Due to limitations in acquisition equipment, noise perturbations often corrupt 3-D point clouds, hindering down-stream tasks such as surface reconstruction, rendering, and further processing. Existing 3-D point cloud denoising methods typically fail to reliably fit the underlying continuous surface, resulting in a degradation of reconstruction performance. This paper introduces fine-granularity dynamic graph convolutional networks called GD-GCN, a novel approach to denoising in 3-D point clouds. The GD-GCN employs micro-step temporal graph convolution (MST-GConv) to perform feature learning in a gradual manner. Compared with the conventional GCN, which commonly uses discrete integer-step graph convolution, this modification introduces a more adaptable and nuanced approach to feature learning within graph convolution networks. It more accurately depicts the process of fitting the point cloud with noise to the underlying surface by and the learning process for MST-GConv acts like a changing system and is managed through a type of neural network known as neural Partial Differential Equations (PDEs). This means it can adapt and improve over time. GD-GCN approximates the Riemannian metric, calculating distances between points along a low-dimensional manifold. This capability allows it to understand the local geometric structure and effectively capture diverse relationships between points from different geometric regions through geometric graph construction based on Riemannian distances. Additionally, GD-GCN incorporates robust graph spectral filters based on the Bernstein polynomial approximation, which modulate eigenvalues for complex and arbitrary spectral responses, providing theoretical guarantees for BIBO stability. Symmetric channel mixing matrices further enhance filter flexibility by enabling channel-level scaling and shifting in the spectral domain.
- Abstract(参考訳): 取得装置の制限のため、ノイズ摂動はしばしば3Dポイントの雲を破損させ、表面再構成、レンダリング、さらなる処理といった下流のタスクを妨げている。
既存の3Dポイント・クラウド・デノナイズ法は、通常、基礎となる連続面に確実に適合しないため、復元性能が低下する。
本稿では,GD-GCNと呼ばれる細粒度動的グラフ畳み込みネットワークについて紹介する。
GD-GCNは、マイクロステップ時間グラフ畳み込み(MST-GConv)を用いて、段階的に特徴学習を行う。
離散的な整数ステップグラフ畳み込みを利用する従来のGCNと比較して、この修正はグラフ畳み込みネットワーク内の特徴学習に適応的でニュアンスなアプローチを導入している。
MST-GConvの学習プロセスは、変化するシステムのように振舞い、ニューラル偏微分方程式(Neural partial Differential Equations, PDE)と呼ばれるある種のニューラルネットワークによって管理される。
これは、時間とともに適応し、改善できることを意味します。
GD-GCN はリーマン計量を近似し、低次元多様体に沿った点間の距離を計算する。
この能力により、局所幾何学構造を理解し、リーマン距離に基づく幾何学グラフ構築を通じて、異なる幾何学領域の点間の多様な関係を効果的に捉えることができる。
さらに、GD-GCNはベルンシュタイン多項式近似に基づく頑健なグラフスペクトルフィルタを導入し、複素および任意のスペクトル応答に対する固有値を変調し、BIBO安定性の理論的保証を提供する。
対称チャネル混合行列は、スペクトル領域におけるチャネルレベルのスケーリングとシフトを可能にすることにより、フィルタの柔軟性をさらに向上する。
関連論文リスト
- ASWT-SGNN: Adaptive Spectral Wavelet Transform-based Self-Supervised
Graph Neural Network [20.924559944655392]
本稿では,適応スペクトルウェーブレット変換を用いた自己教師付きグラフニューラルネットワーク(ASWT-SGNN)を提案する。
ASWT-SGNNは高密度スペクトル領域におけるフィルタ関数を正確に近似し、コストの高い固有分解を避ける。
ノード分類タスクにおける最先端モデルに匹敵するパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-12-10T03:07:42Z) - Geometric Graph Filters and Neural Networks: Limit Properties and
Discriminability Trade-offs [122.06927400759021]
本稿では,グラフニューラルネットワーク (GNN) と多様体ニューラルネットワーク (MNN) の関係について検討する。
これらのグラフ上の畳み込みフィルタとニューラルネットワークが連続多様体上の畳み込みフィルタとニューラルネットワークに収束することを示す。
論文 参考訳(メタデータ) (2023-05-29T08:27:17Z) - Point Cloud Attacks in Graph Spectral Domain: When 3D Geometry Meets
Graph Signal Processing [30.86044518259855]
ポイントクラウド学習モデルは敵の攻撃に弱いことが示されている。
本稿では,様々な幾何学的構造に対応するスペクトル領域におけるグラフ変換係数の摂動を目的としたグラフスペクトル領域攻撃を提案する。
実験結果から,提案攻撃の有効性を,非受容性と攻撃成功率の両方の観点から検証した。
論文 参考訳(メタデータ) (2022-07-27T07:02:36Z) - Orthogonal Graph Neural Networks [53.466187667936026]
グラフニューラルネットワーク(GNN)は,ノード表現の学習において優れていたため,大きな注目を集めている。
より畳み込み層を積み重ねることで、GNNのパフォーマンスが大幅に低下する。
本稿では,モデルトレーニングの安定化とモデル一般化性能の向上のために,既存のGNNバックボーンを拡張可能なOrtho-GConvを提案する。
論文 参考訳(メタデータ) (2021-09-23T12:39:01Z) - Spectral Graph Convolutional Networks With Lifting-based Adaptive Graph
Wavelets [81.63035727821145]
スペクトルグラフ畳み込みネットワーク(SGCN)はグラフ表現学習において注目を集めている。
本稿では,適応グラフウェーブレットを用いたグラフ畳み込みを実装した新しいスペクトルグラフ畳み込みネットワークを提案する。
論文 参考訳(メタデータ) (2021-08-03T17:57:53Z) - Towards Efficient Graph Convolutional Networks for Point Cloud Handling [181.59146413326056]
ポイントクラウド上で学習するためのグラフ畳み込みネットワーク(GCN)の計算効率の向上を目指します。
一連の実験により、最適化されたネットワークは計算複雑性を減らし、メモリ消費を減らし、推論速度を加速した。
論文 参考訳(メタデータ) (2021-04-12T17:59:16Z) - Data-Driven Learning of Geometric Scattering Networks [74.3283600072357]
最近提案された幾何散乱変換の緩和に基づく新しいグラフニューラルネットワーク(GNN)モジュールを提案する。
我々の学習可能な幾何散乱(LEGS)モジュールは、ウェーブレットの適応的なチューニングを可能にし、学習された表現に帯域通過の特徴が現れるように促す。
論文 参考訳(メタデータ) (2020-10-06T01:20:27Z) - Stochastic Graph Recurrent Neural Network [6.656993023468793]
本稿では,ノード属性とトポロジの進化を同時に捉えるために潜時変数を適用した新しいニューラルアーキテクチャであるSGRNNを提案する。
具体的には、決定論的状態は、相互干渉を抑制する反復過程において状態から分離される。
実世界のデータセットを用いた実験により,提案モデルの有効性が示された。
論文 参考訳(メタデータ) (2020-09-01T16:14:30Z) - Learning Graph-Convolutional Representations for Point Cloud Denoising [31.557988478764997]
本稿では,学習ベースのポイントクラウド処理手法で発生する置換不変問題に対処可能なディープニューラルネットワークを提案する。
ネットワークは完全に畳み込み可能で、近傍グラフを動的に構築することで、機能の複雑な階層を構築することができる。
特に高騒音レベルと実LiDARスキャンで遭遇したような構造ノイズの存在の両方において堅牢である。
論文 参考訳(メタデータ) (2020-07-06T08:11:28Z) - Scattering GCN: Overcoming Oversmoothness in Graph Convolutional
Networks [0.0]
グラフ畳み込みネットワーク(GCN)は,構造認識の特徴を抽出することによって,グラフデータ処理において有望な結果を示した。
本稿では、幾何学的散乱変換と残差畳み込みによる従来のGCNの増大を提案する。
前者はグラフ信号の帯域通過フィルタリングが可能であり、GCNでしばしば発生する過度な過度な処理を緩和する。
論文 参考訳(メタデータ) (2020-03-18T18:03:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。