論文の概要: Stochastic Graph Recurrent Neural Network
- arxiv url: http://arxiv.org/abs/2009.00538v1
- Date: Tue, 1 Sep 2020 16:14:30 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-23 00:43:56.304528
- Title: Stochastic Graph Recurrent Neural Network
- Title(参考訳): 確率グラフリカレントニューラルネットワーク
- Authors: Tijin Yan, Hongwei Zhang, Zirui Li, Yuanqing Xia
- Abstract要約: 本稿では,ノード属性とトポロジの進化を同時に捉えるために潜時変数を適用した新しいニューラルアーキテクチャであるSGRNNを提案する。
具体的には、決定論的状態は、相互干渉を抑制する反復過程において状態から分離される。
実世界のデータセットを用いた実験により,提案モデルの有効性が示された。
- 参考スコア(独自算出の注目度): 6.656993023468793
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Representation learning over graph structure data has been widely studied due
to its wide application prospects. However, previous methods mainly focus on
static graphs while many real-world graphs evolve over time. Modeling such
evolution is important for predicting properties of unseen networks. To resolve
this challenge, we propose SGRNN, a novel neural architecture that applies
stochastic latent variables to simultaneously capture the evolution in node
attributes and topology. Specifically, deterministic states are separated from
stochastic states in the iterative process to suppress mutual interference.
With semi-implicit variational inference integrated to SGRNN, a non-Gaussian
variational distribution is proposed to help further improve the performance.
In addition, to alleviate KL-vanishing problem in SGRNN, a simple and
interpretable structure is proposed based on the lower bound of KL-divergence.
Extensive experiments on real-world datasets demonstrate the effectiveness of
the proposed model. Code is available at
https://github.com/StochasticGRNN/SGRNN.
- Abstract(参考訳): グラフ構造データによる表現学習は、その幅広い応用可能性から広く研究されている。
しかし、従来の手法は主に静的グラフに焦点を当て、実際のグラフの多くは時間とともに進化する。
このような進化のモデル化は、未知のネットワークの特性を予測するのに重要である。
この課題を解決するために、ノード属性とトポロジーの進化を同時に捉えるために確率的潜在変数を適用する新しいニューラルネットワークsgrnnを提案する。
具体的には、決定論的状態は、相互干渉を抑制する反復過程において確率的状態から分離される。
半単純変分推論をSGRNNに統合することにより、非ガウス変分分布を提案し、さらなる性能向上に寄与する。
さらに、SGRNNにおけるKLの消滅問題を緩和するために、KL分割の低い境界に基づいて、単純かつ解釈可能な構造を提案する。
実世界のデータセットに対する大規模な実験により,提案モデルの有効性が示された。
コードはhttps://github.com/StochasticGRNN/SGRNNで入手できる。
関連論文リスト
- Implicit Graph Neural Diffusion Networks: Convergence, Generalization,
and Over-Smoothing [7.984586585987328]
Inlicit Graph Neural Networks (GNN)は、グラフ学習問題に対処する上で大きな成功を収めた。
パラメータ化グラフラプラシアン演算子に基づく暗黙グラフ拡散層を設計するための幾何学的枠組みを提案する。
ディリクレエネルギー最小化問題の固定点方程式として, 暗黙のGNN層がどう見えるかを示す。
論文 参考訳(メタデータ) (2023-08-07T05:22:33Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
我々は,GNN予測に対する忠実な説明を提供するためにDGREEを提案する。
GNNの情報生成と集約機構を分解することにより、DECREEは入力グラフの特定のコンポーネントのコントリビューションを最終的な予測に追跡することができる。
また,従来の手法で見過ごされるグラフノード間の複雑な相互作用を明らかにするために,サブグラフレベルの解釈アルゴリズムを設計する。
論文 参考訳(メタデータ) (2023-05-22T10:29:52Z) - Dynamic Causal Explanation Based Diffusion-Variational Graph Neural
Network for Spatio-temporal Forecasting [60.03169701753824]
時間予測のための動的拡散型グラフニューラルネットワーク(DVGNN)を提案する。
提案したDVGNNモデルは最先端のアプローチよりも優れ,Root Mean Squared Errorの結果が優れている。
論文 参考訳(メタデータ) (2023-05-16T11:38:19Z) - Graph Sequential Neural ODE Process for Link Prediction on Dynamic and
Sparse Graphs [33.294977897987685]
動的グラフ上のリンク予測は、グラフマイニングにおいて重要な課題である。
動的グラフニューラルネットワーク(DGNN)に基づく既存のアプローチは通常、かなりの量の履歴データを必要とする。
グラフシークエンシャルニューラルネットワークプロセス(GSNOP)と呼ばれる,ニューラルプロセスに基づく新しい手法を提案する。
論文 参考訳(メタデータ) (2022-11-15T23:21:02Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
我々は、同種GNNが不均一グラフを扱うのに十分な能力を持つように、シンプルで効率的なフレームワークを提案する。
具体的には、エッジ型関係と自己ループ接続の重要性を埋め込むために、関係1つのパラメータのみを使用する関係埋め込みベースのグラフニューラルネットワーク(RE-GNN)を提案する。
論文 参考訳(メタデータ) (2022-09-23T05:24:18Z) - GRAND: Graph Neural Diffusion [15.00135729657076]
本稿では,連続拡散過程としてグラフの深層学習にアプローチするグラフニューラル拡散(GRAND)を提案する。
我々のモデルでは、層構造と位相は時間的および空間的作用素の離散化選択に対応する。
我々のモデルの成功の鍵は、データの摂動に対する安定性であり、これは暗黙的および明示的な離散化スキームの両方に対処する。
論文 参考訳(メタデータ) (2021-06-21T09:10:57Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
グラフニューラルネットワーク(GNN)は,グラフ構造化データの学習表現において顕著に普及している。
本研究では,代表的GNNモデル群における集約過程を,グラフ記述問題の解法とみなすことができることを数学的に確立する。
UGNNから派生した新しいGNNモデルADA-UGNNをインスタンス化し、ノード間の適応的滑らかさでグラフを処理する。
論文 参考訳(メタデータ) (2020-10-05T04:57:18Z) - Implicit Graph Neural Networks [46.0589136729616]
Indicit Graph Neural Networks (IGNN) と呼ばれるグラフ学習フレームワークを提案する。
IGNNは一貫して長距離依存を捉え、最先端のGNNモデルより優れている。
論文 参考訳(メタデータ) (2020-09-14T06:04:55Z) - Permutation-equivariant and Proximity-aware Graph Neural Networks with
Stochastic Message Passing [88.30867628592112]
グラフニューラルネットワーク(GNN)は、グラフ上の新たな機械学習モデルである。
置換等価性と近接認識性は、GNNにとって非常に望ましい2つの重要な特性である。
既存のGNNは、主にメッセージパッシング機構に基づいており、同時に2つの特性を保存できないことを示す。
ノードの近さを保つため,既存のGNNをノード表現で拡張する。
論文 参考訳(メタデータ) (2020-09-05T16:46:56Z) - Stochastic Graph Neural Networks [123.39024384275054]
グラフニューラルネットワーク(GNN)は、分散エージェント調整、制御、計画に応用したグラフデータの非線形表現をモデル化する。
現在のGNNアーキテクチャは理想的なシナリオを前提として,環境やヒューマンファクタ,あるいは外部攻撃によるリンク変動を無視している。
これらの状況において、GNNは、トポロジカルなランダム性を考慮していない場合、その分散タスクに対処することができない。
論文 参考訳(メタデータ) (2020-06-04T08:00:00Z) - Multivariate Time Series Forecasting with Transfer Entropy Graph [5.179058210068871]
我々はニューラルグランガー因果性(CauGNN)を用いた新しいエンドツーエンドディープラーニングモデル、グラフニューラルネットワークを提案する。
各変数はグラフノードと見なされ、各エッジは変数間のカジュアルな関係を表す。
提案したCauGNNを評価するために,実世界の3つのベンチマークデータセットが使用されている。
論文 参考訳(メタデータ) (2020-05-03T20:51:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。