Simulation-Aided Policy Tuning for Black-Box Robot Learning
- URL: http://arxiv.org/abs/2411.14246v1
- Date: Thu, 21 Nov 2024 15:52:23 GMT
- Title: Simulation-Aided Policy Tuning for Black-Box Robot Learning
- Authors: Shiming He, Alexander von Rohr, Dominik Baumann, Ji Xiang, Sebastian Trimpe,
- Abstract summary: We present a novel black-box policy search algorithm focused on data-efficient policy improvements.
The algorithm learns directly on the robot and treats simulation as an additional information source to speed up the learning process.
We show fast and successful task learning on a robot manipulator with the aid of an imperfect simulator.
- Score: 47.83474891747279
- License:
- Abstract: How can robots learn and adapt to new tasks and situations with little data? Systematic exploration and simulation are crucial tools for efficient robot learning. We present a novel black-box policy search algorithm focused on data-efficient policy improvements. The algorithm learns directly on the robot and treats simulation as an additional information source to speed up the learning process. At the core of the algorithm, a probabilistic model learns the dependence of the policy parameters and the robot learning objective not only by performing experiments on the robot, but also by leveraging data from a simulator. This substantially reduces interaction time with the robot. Using this model, we can guarantee improvements with high probability for each policy update, thereby facilitating fast, goal-oriented learning. We evaluate our algorithm on simulated fine-tuning tasks and demonstrate the data-efficiency of the proposed dual-information source optimization algorithm. In a real robot learning experiment, we show fast and successful task learning on a robot manipulator with the aid of an imperfect simulator.
Related papers
- Robot Fine-Tuning Made Easy: Pre-Training Rewards and Policies for
Autonomous Real-World Reinforcement Learning [58.3994826169858]
We introduce RoboFuME, a reset-free fine-tuning system for robotic reinforcement learning.
Our insights are to utilize offline reinforcement learning techniques to ensure efficient online fine-tuning of a pre-trained policy.
Our method can incorporate data from an existing robot dataset and improve on a target task within as little as 3 hours of autonomous real-world experience.
arXiv Detail & Related papers (2023-10-23T17:50:08Z) - Quality-Diversity Optimisation on a Physical Robot Through
Dynamics-Aware and Reset-Free Learning [4.260312058817663]
We build upon the Reset-Free QD (RF-QD) algorithm to learn controllers directly on a physical robot.
This method uses a dynamics model, learned from interactions between the robot and the environment, to predict the robot's behaviour.
RF-QD also includes a recovery policy that returns the robot to a safe zone when it has walked outside of it, allowing continuous learning.
arXiv Detail & Related papers (2023-04-24T13:24:00Z) - Self-Improving Robots: End-to-End Autonomous Visuomotor Reinforcement
Learning [54.636562516974884]
In imitation and reinforcement learning, the cost of human supervision limits the amount of data that robots can be trained on.
In this work, we propose MEDAL++, a novel design for self-improving robotic systems.
The robot autonomously practices the task by learning to both do and undo the task, simultaneously inferring the reward function from the demonstrations.
arXiv Detail & Related papers (2023-03-02T18:51:38Z) - Robot Learning from Randomized Simulations: A Review [59.992761565399185]
Deep learning has caused a paradigm shift in robotics research, favoring methods that require large amounts of data.
State-of-the-art approaches learn in simulation where data generation is fast as well as inexpensive.
We focus on a technique named 'domain randomization' which is a method for learning from randomized simulations.
arXiv Detail & Related papers (2021-11-01T13:55:41Z) - A Framework for Efficient Robotic Manipulation [79.10407063260473]
We show that a single robotic arm can learn sparse-reward manipulation policies from pixels.
We show that, given only 10 demonstrations, a single robotic arm can learn sparse-reward manipulation policies from pixels.
arXiv Detail & Related papers (2020-12-14T22:18:39Z) - Low Dimensional State Representation Learning with Reward-shaped Priors [7.211095654886105]
We propose a method that aims at learning a mapping from the observations into a lower-dimensional state space.
This mapping is learned with unsupervised learning using loss functions shaped to incorporate prior knowledge of the environment and the task.
We test the method on several mobile robot navigation tasks in a simulation environment and also on a real robot.
arXiv Detail & Related papers (2020-07-29T13:00:39Z) - Efficient reinforcement learning control for continuum robots based on
Inexplicit Prior Knowledge [3.3645162441357437]
We propose an efficient reinforcement learning method based on inexplicit prior knowledge.
By using our method, we can achieve active visual tracking and distance maintenance of a tendon-driven robot.
arXiv Detail & Related papers (2020-02-26T15:47:11Z) - Scalable Multi-Task Imitation Learning with Autonomous Improvement [159.9406205002599]
We build an imitation learning system that can continuously improve through autonomous data collection.
We leverage the robot's own trials as demonstrations for tasks other than the one that the robot actually attempted.
In contrast to prior imitation learning approaches, our method can autonomously collect data with sparse supervision for continuous improvement.
arXiv Detail & Related papers (2020-02-25T18:56:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.