Enhancing Medical Image Segmentation with Deep Learning and Diffusion Models
- URL: http://arxiv.org/abs/2411.14353v1
- Date: Thu, 21 Nov 2024 17:49:15 GMT
- Title: Enhancing Medical Image Segmentation with Deep Learning and Diffusion Models
- Authors: Houze Liu, Tong Zhou, Yanlin Xiang, Aoran Shen, Jiacheng Hu, Junliang Du,
- Abstract summary: Medical image segmentation is crucial for accurate clinical diagnoses.
It faces challenges such as low contrast between lesions and normal tissues, unclear boundaries, and high variability across patients.
Deep learning has improved segmentation accuracy and efficiency, but it still relies heavily on expert annotations.
This article discusses the importance of medical image segmentation, the limitations of current deep learning approaches, and the potential of diffusion models to address these challenges.
- Score: 7.53596352508181
- License:
- Abstract: Medical image segmentation is crucial for accurate clinical diagnoses, yet it faces challenges such as low contrast between lesions and normal tissues, unclear boundaries, and high variability across patients. Deep learning has improved segmentation accuracy and efficiency, but it still relies heavily on expert annotations and struggles with the complexities of medical images. The small size of medical image datasets and the high cost of data acquisition further limit the performance of segmentation networks. Diffusion models, with their iterative denoising process, offer a promising alternative for better detail capture in segmentation. However, they face difficulties in accurately segmenting small targets and maintaining the precision of boundary details. This article discusses the importance of medical image segmentation, the limitations of current deep learning approaches, and the potential of diffusion models to address these challenges.
Related papers
- MAPUNetR: A Hybrid Vision Transformer and U-Net Architecture for Efficient and Interpretable Medical Image Segmentation [0.0]
We introduce MAPUNetR, a novel architecture that synergizes the strengths of transformer models with the proven U-Net framework for medical image segmentation.
Our model addresses the resolution preservation challenge and incorporates attention maps highlighting segmented regions, increasing accuracy and interpretability.
Our experiments show that the model maintains stable performance and potential as a powerful tool for medical image segmentation in clinical practice.
arXiv Detail & Related papers (2024-10-29T16:52:57Z) - MedUHIP: Towards Human-In-the-Loop Medical Segmentation [5.520419627866446]
Medical image segmentation is particularly complicated by inherent uncertainties.
We propose a novel approach that integrates an textbfuncertainty-aware model with textbfhuman-in-the-loop interaction
Our method showcases superior segmentation capabilities, outperforming a wide range of deterministic and uncertainty-aware models.
arXiv Detail & Related papers (2024-08-03T01:06:02Z) - Optimizing Skin Lesion Classification via Multimodal Data and Auxiliary
Task Integration [54.76511683427566]
This research introduces a novel multimodal method for classifying skin lesions, integrating smartphone-captured images with essential clinical and demographic information.
A distinctive aspect of this method is the integration of an auxiliary task focused on super-resolution image prediction.
The experimental evaluations have been conducted using the PAD-UFES20 dataset, applying various deep-learning architectures.
arXiv Detail & Related papers (2024-02-16T05:16:20Z) - Dual-scale Enhanced and Cross-generative Consistency Learning for Semi-supervised Medical Image Segmentation [49.57907601086494]
Medical image segmentation plays a crucial role in computer-aided diagnosis.
We propose a novel Dual-scale Enhanced and Cross-generative consistency learning framework for semi-supervised medical image (DEC-Seg)
arXiv Detail & Related papers (2023-12-26T12:56:31Z) - AMLP:Adaptive Masking Lesion Patches for Self-supervised Medical Image
Segmentation [67.97926983664676]
Self-supervised masked image modeling has shown promising results on natural images.
However, directly applying such methods to medical images remains challenging.
We propose a novel self-supervised medical image segmentation framework, Adaptive Masking Lesion Patches (AMLP)
arXiv Detail & Related papers (2023-09-08T13:18:10Z) - A hybrid approach for improving U-Net variants in medical image
segmentation [0.0]
The technique of splitting a medical image into various segments or regions of interest is known as medical image segmentation.
The segmented images that are produced can be used for many different things, including diagnosis, surgery planning, and therapy evaluation.
This research aims to reduce the network parameter requirements using depthwise separable convolutions.
arXiv Detail & Related papers (2023-07-31T07:43:45Z) - Scale-aware Super-resolution Network with Dual Affinity Learning for
Lesion Segmentation from Medical Images [50.76668288066681]
We present a scale-aware super-resolution network to adaptively segment lesions of various sizes from low-resolution medical images.
Our proposed network achieved consistent improvements compared to other state-of-the-art methods.
arXiv Detail & Related papers (2023-05-30T14:25:55Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - Analysing the effectiveness of a generative model for semi-supervised
medical image segmentation [23.898954721893855]
State-of-the-art in automated segmentation remains supervised learning, employing discriminative models such as U-Net.
Semi-supervised learning (SSL) attempts to leverage the abundance of unlabelled data to obtain more robust and reliable models.
Deep generative models such as the SemanticGAN are truly viable alternatives to tackle challenging medical image segmentation problems.
arXiv Detail & Related papers (2022-11-03T15:19:59Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - Enhancing Foreground Boundaries for Medical Image Segmentation [13.954358685870886]
We propose a boundary enhancement loss to enforce additional constraints on optimizing machine learning models.
Our experimental results validate that our loss function are better than, or at least comparable to, other state-of-the-art loss functions in terms of segmentation accuracy.
arXiv Detail & Related papers (2020-05-29T00:50:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.