論文の概要: Contrasting local and global modeling with machine learning and satellite data: A case study estimating tree canopy height in African savannas
- arxiv url: http://arxiv.org/abs/2411.14354v1
- Date: Thu, 21 Nov 2024 17:53:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-22 15:20:43.105890
- Title: Contrasting local and global modeling with machine learning and satellite data: A case study estimating tree canopy height in African savannas
- Title(参考訳): 機械学習と衛星データによる局所・グローバルモデリングの対比:アフリカサバンナの樹高推定を事例として
- Authors: Esther Rolf, Lucia Gordon, Milind Tambe, Andrew Davies,
- Abstract要約: ローカルに収集したデータだけで訓練された小さなモデルは、グローバルTCHマップよりも優れています。
局所モデリングパラダイムとグローバルモデリングパラダイムの対立点と相乗効果の特定を行う。
- 参考スコア(独自算出の注目度): 23.868986217962373
- License:
- Abstract: While advances in machine learning with satellite imagery (SatML) are facilitating environmental monitoring at a global scale, developing SatML models that are accurate and useful for local regions remains critical to understanding and acting on an ever-changing planet. As increasing attention and resources are being devoted to training SatML models with global data, it is important to understand when improvements in global models will make it easier to train or fine-tune models that are accurate in specific regions. To explore this question, we contrast local and global training paradigms for SatML through a case study of tree canopy height (TCH) mapping in the Karingani Game Reserve, Mozambique. We find that recent advances in global TCH mapping do not necessarily translate to better local modeling abilities in our study region. Specifically, small models trained only with locally-collected data outperform published global TCH maps, and even outperform globally pretrained models that we fine-tune using local data. Analyzing these results further, we identify specific points of conflict and synergy between local and global modeling paradigms that can inform future research toward aligning local and global performance objectives in geospatial machine learning.
- Abstract(参考訳): サテライト画像を用いた機械学習(SatML)の進歩は、世界規模での環境モニタリングを促進する一方で、局所的に正確で有用なSatMLモデルの開発は、常に変化する惑星に対する理解と行動にとって重要な課題である。
グローバルデータを用いたSatMLモデルのトレーニングに注目とリソースが注がれているため、グローバルモデルの改善によって、特定の領域で正確であるモデルのトレーニングや微調整が容易になるのかを理解することが重要である。
そこで本研究では,モザンビークのカリンガニゲームリザーブ(Karingani Game Reserve)における樹冠の高さ(TCH)マッピングのケーススタディを通じて,SatMLの局所的およびグローバルなトレーニングパラダイムを対比した。
近年のグローバルTHマッピングの進歩は,研究領域における局所モデリング能力の向上に必ずしも寄与していないことがわかった。
具体的には、局所的に収集されたデータのみを用いてトレーニングされた小さなモデルは、公表されたグローバルTCHマップよりも優れ、また、ローカルデータを使用して微調整した世界的な事前学習モデルよりも優れています。
これらの結果をさらに分析し,地空間機械学習における局所的・グローバルなパフォーマンス目標の整合性に寄与する局所的・グローバルなモデリングパラダイム間の対立点と相乗効果を明らかにした。
関連論文リスト
- SPARTAN: A Sparse Transformer Learning Local Causation [63.29645501232935]
因果構造は、環境の変化に柔軟に適応する世界モデルにおいて中心的な役割を果たす。
本研究では,SPARse TrANsformer World Model(SPARTAN)を提案する。
オブジェクト指向トークン間の注意パターンに空間規則を適用することで、SPARTANは、将来のオブジェクト状態を正確に予測するスパース局所因果モデルを特定する。
論文 参考訳(メタデータ) (2024-11-11T11:42:48Z) - FedDistill: Global Model Distillation for Local Model De-Biasing in Non-IID Federated Learning [10.641875933652647]
フェデレートラーニング(FL)は、協調機械学習を可能にする新しいアプローチである。
FLは、クライアント間で均一に分散されていない(非ID)データのために、課題に直面します。
本稿では,グローバルモデルからローカルモデルへの知識伝達を促進するフレームワークであるFedDistillを紹介する。
論文 参考訳(メタデータ) (2024-04-14T10:23:30Z) - Tunable Soft Prompts are Messengers in Federated Learning [55.924749085481544]
フェデレートラーニング(FL)は、複数の参加者が分散データソースを使用して機械学習モデルを協調的にトレーニングすることを可能にする。
FLにおけるモデルプライバシ保護の欠如は無視できない課題となっている。
そこで本研究では,ソフトプロンプトによって参加者間の情報交換を実現する新しいFLトレーニング手法を提案する。
論文 参考訳(メタデータ) (2023-11-12T11:01:10Z) - FedSOL: Stabilized Orthogonal Learning with Proximal Restrictions in Federated Learning [27.28589196972422]
フェデレートラーニング(FL)は、個々のクライアントからローカルに訓練されたモデルを集約し、グローバルモデルを構築する。
FLは、クライアントが不均一なデータ分散を持つ場合、大きなパフォーマンス劣化に悩まされることが多い。
本稿では,地域学習とグローバル学習のバランスをとる新しい手法であるFederated Stabilized Orthogonal Learning (FedSOL)を提案する。
論文 参考訳(メタデータ) (2023-08-24T03:43:02Z) - FedSoup: Improving Generalization and Personalization in Federated
Learning via Selective Model Interpolation [32.36334319329364]
クロスサイロフェデレーション学習(FL)は、データセンタに分散したデータセット上での機械学習モデルの開発を可能にする。
近年の研究では、現在のFLアルゴリズムは、分布シフトに直面した場合、局所的な性能とグローバルな性能のトレードオフに直面している。
地域とグローバルのパフォーマンスのトレードオフを最適化する新しいフェデレーションモデルスープ手法を提案する。
論文 参考訳(メタデータ) (2023-07-20T00:07:29Z) - Activation Regression for Continuous Domain Generalization with
Applications to Crop Classification [48.795866501365694]
衛星画像の地理的変異は、機械学習モデルが新しい領域に一般化する能力に影響を与える。
中分解能ランドサット8衛星画像の地理的一般化を連続領域適応問題としてモデル化する。
我々は,アメリカ大陸全域に空間分布するデータセットを開発した。
論文 参考訳(メタデータ) (2022-04-14T15:41:39Z) - Jalisco's multiclass land cover analysis and classification using a
novel lightweight convnet with real-world multispectral and relief data [51.715517570634994]
本稿では、LC分類と解析を行うために、新しい軽量(89kパラメータのみ)畳み込みニューラルネットワーク(ConvNet)を提案する。
本研究では,実世界のオープンデータソースを3つ組み合わせて13のチャネルを得る。
組込み分析は、いくつかのクラスにおいて限られたパフォーマンスを期待し、最も類似したクラスをグループ化する機会を与えてくれます。
論文 参考訳(メタデータ) (2022-01-26T14:58:51Z) - Preservation of the Global Knowledge by Not-True Self Knowledge
Distillation in Federated Learning [8.474470736998136]
フェデレートラーニング(FL)では、強力なグローバルモデルが、クライアントのローカルにトレーニングされたモデルを集約することによって、協調的に学習される。
偏りのある地域分布への適応は、その特徴をグローバルな分布にシフトさせ、グローバルな知識を忘れる結果をもたらすことを観察する。
本稿では, ローカルデータに対するグローバルな知識を活用した, 簡便かつ効果的なフェデレートローカル自己蒸留(FedLSD)フレームワークを提案する。
論文 参考訳(メタデータ) (2021-06-06T11:51:47Z) - Federated Learning With Quantized Global Model Updates [84.55126371346452]
モバイル端末がローカルデータセットを使用してグローバルモデルをトレーニングできるフェデレーション学習について検討する。
本稿では,大域的モデルと局所的モデル更新の両方を,送信前に量子化する損失FL(LFL)アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-06-18T16:55:20Z) - MapLUR: Exploring a new Paradigm for Estimating Air Pollution using Deep
Learning on Map Images [4.7791671364702575]
土地利用回帰モデルは, 計測ステーションのない地域での大気汚染濃度を評価する上で重要である。
我々は,オープンかつグローバルなデータのみを用いて,純粋にデータ駆動型アプローチに基づくモデルを実現する,データ駆動型オープングローバル(DOG)パラダイムを提案する。
論文 参考訳(メタデータ) (2020-02-18T11:21:55Z) - Think Locally, Act Globally: Federated Learning with Local and Global
Representations [92.68484710504666]
フェデレートラーニング(Federated Learning)とは、複数のデバイスに分散したプライベートデータ上でモデルをトレーニングする手法である。
本稿では,各デバイス上でコンパクトな局所表現を共同で学習する新しいフェデレーション学習アルゴリズムを提案する。
また、プライバシが鍵となる実世界のモバイルデータから、パーソナライズされた気分予測のタスクを評価する。
論文 参考訳(メタデータ) (2020-01-06T12:40:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。