InCrowd-VI: A Realistic Visual-Inertial Dataset for Evaluating SLAM in Indoor Pedestrian-Rich Spaces for Human Navigation
- URL: http://arxiv.org/abs/2411.14358v1
- Date: Thu, 21 Nov 2024 17:58:07 GMT
- Title: InCrowd-VI: A Realistic Visual-Inertial Dataset for Evaluating SLAM in Indoor Pedestrian-Rich Spaces for Human Navigation
- Authors: Marziyeh Bamdad, Hans-Peter Hutter, Alireza Darvishy,
- Abstract summary: We introduce InCrowd-VI, a novel visual-inertial dataset specifically designed for human navigation in indoor pedestrian-rich environments.
InCrowd-VI features 58 sequences totaling a 5 km trajectory length and 1.5 hours of recording time, including RGB, stereo images, and IMU measurements.
Ground-truth trajectories, accurate to approximately 2 cm, are provided in the dataset, originating from the Meta Aria project machine perception SLAM service.
- Score: 2.184775414778289
- License:
- Abstract: Simultaneous localization and mapping (SLAM) techniques can be used to navigate the visually impaired, but the development of robust SLAM solutions for crowded spaces is limited by the lack of realistic datasets. To address this, we introduce InCrowd-VI, a novel visual-inertial dataset specifically designed for human navigation in indoor pedestrian-rich environments. Recorded using Meta Aria Project glasses, it captures realistic scenarios without environmental control. InCrowd-VI features 58 sequences totaling a 5 km trajectory length and 1.5 hours of recording time, including RGB, stereo images, and IMU measurements. The dataset captures important challenges such as pedestrian occlusions, varying crowd densities, complex layouts, and lighting changes. Ground-truth trajectories, accurate to approximately 2 cm, are provided in the dataset, originating from the Meta Aria project machine perception SLAM service. In addition, a semi-dense 3D point cloud of scenes is provided for each sequence. The evaluation of state-of-the-art visual odometry (VO) and SLAM algorithms on InCrowd-VI revealed severe performance limitations in these realistic scenarios, demonstrating the need and value of the new dataset to advance SLAM research for visually impaired navigation in complex indoor environments.
Related papers
- LiveHPS: LiDAR-based Scene-level Human Pose and Shape Estimation in Free
Environment [59.320414108383055]
We present LiveHPS, a novel single-LiDAR-based approach for scene-level human pose and shape estimation.
We propose a huge human motion dataset, named FreeMotion, which is collected in various scenarios with diverse human poses.
arXiv Detail & Related papers (2024-02-27T03:08:44Z) - UAVD4L: A Large-Scale Dataset for UAV 6-DoF Localization [14.87295056434887]
We introduce a large-scale 6-DoF UAV dataset for localization (UAVD4L)
We develop a two-stage 6-DoF localization pipeline (UAVLoc), which consists of offline synthetic data generation and online visual localization.
Results on the new dataset demonstrate the effectiveness of the proposed approach.
arXiv Detail & Related papers (2024-01-11T15:19:21Z) - Amirkabir campus dataset: Real-world challenges and scenarios of Visual
Inertial Odometry (VIO) for visually impaired people [3.7998592843098336]
We introduce the Amirkabir campus dataset (AUT-VI) to address the mentioned problem and improve the navigation systems.
AUT-VI is a novel and super-challenging dataset with 126 diverse sequences in 17 different locations.
In support of ongoing development efforts, we have released the Android application for data capture to the public.
arXiv Detail & Related papers (2024-01-07T23:13:51Z) - Improving Underwater Visual Tracking With a Large Scale Dataset and
Image Enhancement [70.2429155741593]
This paper presents a new dataset and general tracker enhancement method for Underwater Visual Object Tracking (UVOT)
It poses distinct challenges; the underwater environment exhibits non-uniform lighting conditions, low visibility, lack of sharpness, low contrast, camouflage, and reflections from suspended particles.
We propose a novel underwater image enhancement algorithm designed specifically to boost tracking quality.
The method has resulted in a significant performance improvement, of up to 5.0% AUC, of state-of-the-art (SOTA) visual trackers.
arXiv Detail & Related papers (2023-08-30T07:41:26Z) - FLSea: Underwater Visual-Inertial and Stereo-Vision Forward-Looking
Datasets [8.830479021890575]
We have collected underwater forward-looking stereo-vision and visual-inertial image sets in the Mediterranean and Red Sea.
These datasets are critical for the development of several underwater applications, including obstacle avoidance, visual odometry, 3D tracking, Simultaneous localization and Mapping (SLAM) and depth estimation.
arXiv Detail & Related papers (2023-02-24T17:39:53Z) - Towards Scale Consistent Monocular Visual Odometry by Learning from the
Virtual World [83.36195426897768]
We propose VRVO, a novel framework for retrieving the absolute scale from virtual data.
We first train a scale-aware disparity network using both monocular real images and stereo virtual data.
The resulting scale-consistent disparities are then integrated with a direct VO system.
arXiv Detail & Related papers (2022-03-11T01:51:54Z) - Fog Simulation on Real LiDAR Point Clouds for 3D Object Detection in
Adverse Weather [92.84066576636914]
This work addresses the challenging task of LiDAR-based 3D object detection in foggy weather.
We tackle this problem by simulating physically accurate fog into clear-weather scenes.
We are the first to provide strong 3D object detection baselines on the Seeing Through Fog dataset.
arXiv Detail & Related papers (2021-08-11T14:37:54Z) - A Flow Base Bi-path Network for Cross-scene Video Crowd Understanding in
Aerial View [93.23947591795897]
In this paper, we strive to tackle the challenges and automatically understand the crowd from the visual data collected from drones.
To alleviate the background noise generated in cross-scene testing, a double-stream crowd counting model is proposed.
To tackle the crowd density estimation problem under extreme dark environments, we introduce synthetic data generated by game Grand Theft Auto V(GTAV)
arXiv Detail & Related papers (2020-09-29T01:48:24Z) - Exploring the Impacts from Datasets to Monocular Depth Estimation (MDE)
Models with MineNavi [5.689127984415125]
Current computer vision tasks based on deep learning require a huge amount of data with annotations for model training or testing.
In practice, manual labeling for dense estimation tasks is very difficult or even impossible, and the scenes of the dataset are often restricted to a small range.
We propose a synthetic dataset generation method to obtain the expandable dataset without burdensome manual workforce.
arXiv Detail & Related papers (2020-08-19T14:03:17Z) - Transferable Active Grasping and Real Embodied Dataset [48.887567134129306]
We show how to search for feasible viewpoints for grasping by the use of hand-mounted RGB-D cameras.
A practical 3-stage transferable active grasping pipeline is developed, that is adaptive to unseen clutter scenes.
In our pipeline, we propose a novel mask-guided reward to overcome the sparse reward issue in grasping and ensure category-irrelevant behavior.
arXiv Detail & Related papers (2020-04-28T08:15:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.