論文の概要: Enhancing Diagnostic Precision in Gastric Bleeding through Automated Lesion Segmentation: A Deep DuS-KFCM Approach
- arxiv url: http://arxiv.org/abs/2411.14385v2
- Date: Mon, 25 Nov 2024 16:07:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-26 14:19:19.699077
- Title: Enhancing Diagnostic Precision in Gastric Bleeding through Automated Lesion Segmentation: A Deep DuS-KFCM Approach
- Title(参考訳): 胃出血の診断精度向上のためのDuS-KFCM法
- Authors: Xian-Xian Liu, Mingkun Xu, Yuanyuan Wei, Huafeng Qin, Qun Song, Simon Fong, Feng Tien, Wei Luo, Juntao Gao, Zhihua Zhang, Shirley Siu,
- Abstract要約: 本稿では,新しい深層学習モデルDual Spatial Kernelized Constrained Fuzzy C-Means (Deep DuS-KFCM)を提案する。
このシステムは、ニューラルネットワークをファジィ論理と相乗し、出血領域を高精度かつ効率的に同定する。
本モデルでは, 前例のない87.95%の精度と96.33%の特異性を示し,同時代のセグメンテーション法より優れていた。
- 参考スコア(独自算出の注目度): 20.416923956241497
- License:
- Abstract: Timely and precise classification and segmentation of gastric bleeding in endoscopic imagery are pivotal for the rapid diagnosis and intervention of gastric complications, which is critical in life-saving medical procedures. Traditional methods grapple with the challenge posed by the indistinguishable intensity values of bleeding tissues adjacent to other gastric structures. Our study seeks to revolutionize this domain by introducing a novel deep learning model, the Dual Spatial Kernelized Constrained Fuzzy C-Means (Deep DuS-KFCM) clustering algorithm. This Hybrid Neuro-Fuzzy system synergizes Neural Networks with Fuzzy Logic to offer a highly precise and efficient identification of bleeding regions. Implementing a two-fold coarse-to-fine strategy for segmentation, this model initially employs the Spatial Kernelized Fuzzy C-Means (SKFCM) algorithm enhanced with spatial intensity profiles and subsequently harnesses the state-of-the-art DeepLabv3+ with ResNet50 architecture to refine the segmentation output. Through extensive experiments across mainstream gastric bleeding and red spots datasets, our Deep DuS-KFCM model demonstrated unprecedented accuracy rates of 87.95%, coupled with a specificity of 96.33%, outperforming contemporary segmentation methods. The findings underscore the model's robustness against noise and its outstanding segmentation capabilities, particularly for identifying subtle bleeding symptoms, thereby presenting a significant leap forward in medical image processing.
- Abstract(参考訳): 内視鏡像における胃出血のタイムリーかつ正確な分類と分画は,救命医療において重要な胃合併症の迅速診断と治療の要点である。
従来の方法では、他の胃組織に隣接する出血組織の強度値の区別できない値によって引き起こされる課題に対処する。
本研究では,新しい深層学習モデルであるDual Space Kernelized Constrained Fuzzy C-Means (Deep DuS-KFCM) を導入することで,この領域に革命をもたらすことを目的とする。
このハイブリッドニューロファジィシステムは、ニューラルネットワークをファジィ論理と相乗し、出血領域の高精度かつ効率的な同定を提供する。
セグメント化のための2倍の粗粒度戦略を実装したこのモデルは、最初は空間強度プロファイルで拡張された空間カーネル化ファジィC平均(SKFCM)アルゴリズムを使用し、その後ResNet50アーキテクチャで最先端のDeepLabv3+を用いてセグメント化出力を改良した。
我々のDeep DuS-KFCMモデルは、主流の胃出血データセットと赤色斑点データセットの広範な実験を通じて、前例のない精度87.95%の精度と96.33%の特異性を示し、現代のセグメンテーション法を上回った。
この結果は、特に微妙な出血症状を特定するために、ノイズに対するモデルの頑丈さと、その顕著なセグメンテーション能力を強調し、医用画像処理において大きな飛躍をもたらした。
関連論文リスト
- Airway Labeling Meets Clinical Applications: Reflecting Topology Consistency and Outliers via Learnable Attentions [19.269806092729468]
気道解剖学的ラベリングは、気管支鏡で複雑な気管支構造を識別し、ナビゲートするために、臨床医にとって不可欠である。
従来の手法は一貫性のない予測を生成する傾向にある。
本稿では, トポロジカルな整合性を高め, 異常な気道分岐の検出を改善する手法を提案する。
論文 参考訳(メタデータ) (2024-10-31T12:04:30Z) - AG-CRC: Anatomy-Guided Colorectal Cancer Segmentation in CT with
Imperfect Anatomical Knowledge [9.961742312147674]
自動生成臓器マスクを利用する新しい解剖ガイドセグメンテーションフレームワークを開発した。
提案手法を2つのCRCセグメンテーションデータセット上で広範囲に評価する。
論文 参考訳(メタデータ) (2023-10-07T03:22:06Z) - K-Space-Aware Cross-Modality Score for Synthesized Neuroimage Quality
Assessment [71.27193056354741]
クロスモダリティな医用画像合成をどう評価するかという問題は、ほとんど解明されていない。
本稿では,この課題の進展を促すため,新しい指標K-CROSSを提案する。
K-CROSSは、トレーニング済みのマルチモードセグメンテーションネットワークを使用して、病変の位置を予測する。
論文 参考訳(メタデータ) (2023-07-10T01:26:48Z) - Tissue Classification During Needle Insertion Using Self-Supervised
Contrastive Learning and Optical Coherence Tomography [53.38589633687604]
針先端で取得した複雑なCT信号の位相および強度データから組織を分類するディープニューラルネットワークを提案する。
トレーニングセットの10%で、提案した事前学習戦略により、モデルが0.84のF1スコアを達成するのに対して、モデルが0.60のF1スコアを得るのに対して、モデルが0.84のF1スコアを得るのに役立ちます。
論文 参考訳(メタデータ) (2023-04-26T14:11:04Z) - WSC-Trans: A 3D network model for automatic multi-structural
segmentation of temporal bone CT [5.821303529939008]
側頭骨CTにおける多構造目標の自動セグメンテーションのための3次元ネットワークモデルを提案する。
このアルゴリズムは特徴抽出のためにCNNとTransformerを組み合わせて,空間的注意とチャネル注意機構を活用し,セグメンテーション効果をさらに改善する。
論文 参考訳(メタデータ) (2022-11-14T06:44:37Z) - Fuzzy Attention Neural Network to Tackle Discontinuity in Airway
Segmentation [67.19443246236048]
気道セグメンテーションは肺疾患の検査、診断、予後に重要である。
いくつかの小型の気道支線(気管支や終端など)は自動セグメンテーションの難しさを著しく増す。
本稿では,新しいファジィアテンションニューラルネットワークと包括的損失関数を備える,気道セグメンテーションの効率的な手法を提案する。
論文 参考訳(メタデータ) (2022-09-05T16:38:13Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
本稿では, セグメンテーションによる異常胸部X線(CXR)識別性能を向上させるための深層学習手法を提案する。
提案手法は,CXR画像中の肺領域を局所化するための深層ニューラルネットワーク(XLSor)と,大規模CXRデータセットで事前学習した自己教師あり運動量コントラスト(MoCo)モデルのバックボーンを用いたCXR分類モデルである。
論文 参考訳(メタデータ) (2022-02-22T15:24:06Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
ヘマトキシリンとエオシン(H&E)で染色した組織学的肺スライドにおける癌病変の自動検出のためのグラフベーススパース成分分析(GS-PCA)ネットワークを提案する。
我々は,SVM K-rasG12D肺がんモデルから得られたH&Eスライダーの精度・リコール率,Fスコア,谷本係数,レシーバ演算子特性(ROC)の曲線下領域を用いて,提案アルゴリズムの性能評価を行った。
論文 参考訳(メタデータ) (2021-10-27T19:28:36Z) - Weakly-Supervised Universal Lesion Segmentation with Regional Level Set
Loss [16.80758525711538]
高分解能ネットワーク(HRNet)に基づく新しい弱監督ユニバーサル病変分割法を提案する。
AHRNetはデコーダ、デュアルアテンション、スケールアテンション機構を含む高度な高解像度のディープイメージ機能を提供する。
本手法は,公開大規模deeplesionデータセットとホールドアウトテストセットにおいて,最高の性能を実現する。
論文 参考訳(メタデータ) (2021-05-03T23:33:37Z) - A Global Benchmark of Algorithms for Segmenting Late Gadolinium-Enhanced
Cardiac Magnetic Resonance Imaging [90.29017019187282]
現在世界最大の心臓LGE-MRIデータセットである154個の3D LGE-MRIを用いた「2018 left Atrium Challenge」。
技術および生物学的指標を用いた提案アルゴリズムの解析を行った。
その結果, 最上部法は93.2%, 平均表面は0.7mmであった。
論文 参考訳(メタデータ) (2020-04-26T08:49:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。