Testing Uncertainty of Large Language Models for Physics Knowledge and Reasoning
- URL: http://arxiv.org/abs/2411.14465v1
- Date: Mon, 18 Nov 2024 13:42:13 GMT
- Title: Testing Uncertainty of Large Language Models for Physics Knowledge and Reasoning
- Authors: Elizaveta Reganova, Peter Steinbach,
- Abstract summary: Large Language Models (LLMs) have gained significant popularity in recent years for their ability to answer questions in various fields.
We introduce an analysis for evaluating the performance of popular open-source LLMs.
We focus on the relationship between answer accuracy and variability in topics related to physics.
- Score: 0.0
- License:
- Abstract: Large Language Models (LLMs) have gained significant popularity in recent years for their ability to answer questions in various fields. However, these models have a tendency to "hallucinate" their responses, making it challenging to evaluate their performance. A major challenge is determining how to assess the certainty of a model's predictions and how it correlates with accuracy. In this work, we introduce an analysis for evaluating the performance of popular open-source LLMs, as well as gpt-3.5 Turbo, on multiple choice physics questionnaires. We focus on the relationship between answer accuracy and variability in topics related to physics. Our findings suggest that most models provide accurate replies in cases where they are certain, but this is by far not a general behavior. The relationship between accuracy and uncertainty exposes a broad horizontal bell-shaped distribution. We report how the asymmetry between accuracy and uncertainty intensifies as the questions demand more logical reasoning of the LLM agent, while the same relationship remains sharp for knowledge retrieval tasks.
Related papers
- Uncertainty Estimation of Large Language Models in Medical Question Answering [60.72223137560633]
Large Language Models (LLMs) show promise for natural language generation in healthcare, but risk hallucinating factually incorrect information.
We benchmark popular uncertainty estimation (UE) methods with different model sizes on medical question-answering datasets.
Our results show that current approaches generally perform poorly in this domain, highlighting the challenge of UE for medical applications.
arXiv Detail & Related papers (2024-07-11T16:51:33Z) - Uncertainty-preserving deep knowledge tracing with state-space models [1.3791394805787949]
A central goal of knowledge tracing and traditional assessment is to quantify student knowledge and skills at a given point in time.
We introduce Dynamic LENS, a modeling paradigm that combines the flexible uncertainty-preserving properties of variational autoencoders with the principled information integration of Bayesian state-space models.
arXiv Detail & Related papers (2024-07-09T13:40:28Z) - Can Model Uncertainty Function as a Proxy for Multiple-Choice Question Item Difficulty? [12.638577140117702]
We leverage an aspect of generative large models which might be seen as a weakness when answering questions.
We explore correlations between two different metrics of uncertainty, and the actual student response distribution.
arXiv Detail & Related papers (2024-07-07T10:48:04Z) - Evaluating Consistency and Reasoning Capabilities of Large Language Models [0.0]
Large Language Models (LLMs) are extensively used today across various sectors, including academia, research, business, and finance.
Despite their widespread adoption, these models often produce incorrect and misleading information, exhibiting a tendency to hallucinate.
This paper aims to evaluate and compare the consistency and reasoning capabilities of both public and proprietary LLMs.
arXiv Detail & Related papers (2024-04-25T10:03:14Z) - Uncertainty-aware Language Modeling for Selective Question Answering [107.47864420630923]
We present an automatic large language model (LLM) conversion approach that produces uncertainty-aware LLMs.
Our approach is model- and data-agnostic, is computationally-efficient, and does not rely on external models or systems.
arXiv Detail & Related papers (2023-11-26T22:47:54Z) - R-Tuning: Instructing Large Language Models to Say `I Don't Know' [66.11375475253007]
Large language models (LLMs) have revolutionized numerous domains with their impressive performance but still face their challenges.
Previous instruction tuning methods force the model to complete a sentence no matter whether the model knows the knowledge or not.
We present a new approach called Refusal-Aware Instruction Tuning (R-Tuning)
Experimental results demonstrate R-Tuning effectively improves a model's ability to answer known questions and refrain from answering unknown questions.
arXiv Detail & Related papers (2023-11-16T08:45:44Z) - Improving the Reliability of Large Language Models by Leveraging
Uncertainty-Aware In-Context Learning [76.98542249776257]
Large-scale language models often face the challenge of "hallucination"
We introduce an uncertainty-aware in-context learning framework to empower the model to enhance or reject its output in response to uncertainty.
arXiv Detail & Related papers (2023-10-07T12:06:53Z) - Realistic Conversational Question Answering with Answer Selection based
on Calibrated Confidence and Uncertainty Measurement [54.55643652781891]
Conversational Question Answering (ConvQA) models aim at answering a question with its relevant paragraph and previous question-answer pairs that occurred during conversation multiple times.
We propose to filter out inaccurate answers in the conversation history based on their estimated confidences and uncertainties from the ConvQA model.
We validate our models, Answer Selection-based realistic Conversation Question Answering, on two standard ConvQA datasets.
arXiv Detail & Related papers (2023-02-10T09:42:07Z) - How Can We Know When Language Models Know? On the Calibration of
Language Models for Question Answering [80.82194311274694]
We examine the question "how can we know when language models know, with confidence, the answer to a particular query?"
We examine three strong generative models -- T5, BART, and GPT-2 -- and study whether their probabilities on QA tasks are well calibrated.
We then examine methods to calibrate such models to make their confidence scores correlate better with the likelihood of correctness.
arXiv Detail & Related papers (2020-12-02T03:53:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.