Uncertainty-preserving deep knowledge tracing with state-space models
- URL: http://arxiv.org/abs/2407.17427v1
- Date: Tue, 9 Jul 2024 13:40:28 GMT
- Title: Uncertainty-preserving deep knowledge tracing with state-space models
- Authors: S. Thomas Christie, Carson Cook, Anna N. Rafferty,
- Abstract summary: A central goal of knowledge tracing and traditional assessment is to quantify student knowledge and skills at a given point in time.
We introduce Dynamic LENS, a modeling paradigm that combines the flexible uncertainty-preserving properties of variational autoencoders with the principled information integration of Bayesian state-space models.
- Score: 1.3791394805787949
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: A central goal of both knowledge tracing and traditional assessment is to quantify student knowledge and skills at a given point in time. Deep knowledge tracing flexibly considers a student's response history but does not quantify epistemic uncertainty, while IRT and CDM compute measurement error but only consider responses to individual tests in isolation from a student's past responses. Elo and BKT could bridge this divide, but the simplicity of the underlying models limits information sharing across skills and imposes strong inductive biases. To overcome these limitations, we introduce Dynamic LENS, a modeling paradigm that combines the flexible uncertainty-preserving properties of variational autoencoders with the principled information integration of Bayesian state-space models. Dynamic LENS allows information from student responses to be collected across time, while treating responses from the same test as exchangeable observations generated by a shared latent state. It represents student knowledge as Gaussian distributions in high-dimensional space and combines estimates both within tests and across time using Bayesian updating. We show that Dynamic LENS has similar predictive performance to competing models, while preserving the epistemic uncertainty - the deep learning analogue to measurement error - that DKT models lack. This approach provides a conceptual bridge across an important divide between models designed for formative practice and summative assessment.
Related papers
- PseudoNeg-MAE: Self-Supervised Point Cloud Learning using Conditional Pseudo-Negative Embeddings [55.55445978692678]
PseudoNeg-MAE is a self-supervised learning framework that enhances global feature representation of point cloud mask autoencoders.
We show that PseudoNeg-MAE achieves state-of-the-art performance on the ModelNet40 and ScanObjectNN datasets.
arXiv Detail & Related papers (2024-09-24T07:57:21Z) - CALICO: Confident Active Learning with Integrated Calibration [11.978551396144532]
We propose an AL framework that self-calibrates the confidence used for sample selection during the training process.
We show improved classification performance compared to a softmax-based classifier with fewer labeled samples.
arXiv Detail & Related papers (2024-07-02T15:05:19Z) - Towards Continual Learning Desiderata via HSIC-Bottleneck
Orthogonalization and Equiangular Embedding [55.107555305760954]
We propose a conceptually simple yet effective method that attributes forgetting to layer-wise parameter overwriting and the resulting decision boundary distortion.
Our method achieves competitive accuracy performance, even with absolute superiority of zero exemplar buffer and 1.02x the base model.
arXiv Detail & Related papers (2024-01-17T09:01:29Z) - Improving the Reliability of Large Language Models by Leveraging
Uncertainty-Aware In-Context Learning [76.98542249776257]
Large-scale language models often face the challenge of "hallucination"
We introduce an uncertainty-aware in-context learning framework to empower the model to enhance or reject its output in response to uncertainty.
arXiv Detail & Related papers (2023-10-07T12:06:53Z) - DCID: Deep Canonical Information Decomposition [84.59396326810085]
We consider the problem of identifying the signal shared between two one-dimensional target variables.
We propose ICM, an evaluation metric which can be used in the presence of ground-truth labels.
We also propose Deep Canonical Information Decomposition (DCID) - a simple, yet effective approach for learning the shared variables.
arXiv Detail & Related papers (2023-06-27T16:59:06Z) - Neuro-symbolic model for cantilever beams damage detection [0.0]
We propose a neuro-symbolic model for the detection of damages in cantilever beams based on a novel cognitive architecture.
The hybrid discriminative model is introduced under the name Logic Convolutional Neural Regressor.
arXiv Detail & Related papers (2023-05-04T13:12:39Z) - FiLM-Ensemble: Probabilistic Deep Learning via Feature-wise Linear
Modulation [69.34011200590817]
We introduce FiLM-Ensemble, a deep, implicit ensemble method based on the concept of Feature-wise Linear Modulation.
By modulating the network activations of a single deep network with FiLM, one obtains a model ensemble with high diversity.
We show that FiLM-Ensemble outperforms other implicit ensemble methods, and it comes very close to the upper bound of an explicit ensemble of networks.
arXiv Detail & Related papers (2022-05-31T18:33:15Z) - Disentangling Observed Causal Effects from Latent Confounders using
Method of Moments [67.27068846108047]
We provide guarantees on identifiability and learnability under mild assumptions.
We develop efficient algorithms based on coupled tensor decomposition with linear constraints to obtain scalable and guaranteed solutions.
arXiv Detail & Related papers (2021-01-17T07:48:45Z) - Deep Knowledge Tracing with Learning Curves [0.9088303226909278]
We propose a Convolution-Augmented Knowledge Tracing (CAKT) model in this paper.
The model employs three-dimensional convolutional neural networks to explicitly learn a student's recent experience on applying the same knowledge concept with that in the next question.
CAKT achieves the new state-of-the-art performance in predicting students' responses compared with existing models.
arXiv Detail & Related papers (2020-07-26T15:24:51Z) - Context-Aware Attentive Knowledge Tracing [21.397976659857793]
We propose attentive knowledge tracing, which couples flexible attention-based neural network models with a series of novel, interpretable model components.
AKT uses a novel monotonic attention mechanism that relates a learner's future responses to assessment questions to their past responses.
We show that AKT outperforms existing KT methods (by up to $6%$ in AUC in some cases) on predicting future learner responses.
arXiv Detail & Related papers (2020-07-24T02:45:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.