A Neural Network Training Method Based on Distributed PID Control
- URL: http://arxiv.org/abs/2411.14468v1
- Date: Mon, 18 Nov 2024 19:25:26 GMT
- Title: A Neural Network Training Method Based on Distributed PID Control
- Authors: Jiang Kun,
- Abstract summary: In the previous article, we introduced a neural network framework based on symmetric differential equations.
This study proposes an alternative training approach that utilizes differential equation signal propagation instead of chain rule derivation.
- Score: 0.0
- License:
- Abstract: In the previous article, we introduced a neural network framework based on symmetric differential equations. This novel framework exhibits complete symmetry, endowing it with perfect mathematical properties. While we have examined some of the system's mathematical characteristics, a detailed discussion of the network training methodology has not yet been presented. Drawing on the principles of the traditional backpropagation algorithm, this study proposes an alternative training approach that utilizes differential equation signal propagation instead of chain rule derivation. This approach not only preserves the effectiveness of training but also offers enhanced biological interpretability. The foundation of this methodology lies in the system's reversibility, which stems from its inherent symmetry,a key aspect of our research. However, this method alone is insufficient for effective neural network training. To address this, we further introduce a distributed Proportional-Integral-Derivative (PID) control approach, emphasizing its implementation within a closed system. By incorporating this method, we achieved both faster training speeds and improved accuracy. This approach not only offers novel insights into neural network training but also extends the scope of research into control methodologies. To validate its effectiveness, we apply this method to the MNIST dataset, demonstrating its practical utility.
Related papers
- Learning by the F-adjoint [0.0]
In this work, we develop and investigate this theoretical framework to improve some supervised learning algorithm for feed-forward neural network.
Our main result is that by introducing some neural dynamical model combined by the gradient descent algorithm, we derived an equilibrium F-adjoint process.
Experimental results on MNIST and Fashion-MNIST datasets, demonstrate that the proposed approach provide a significant improvements on the standard back-propagation training procedure.
arXiv Detail & Related papers (2024-07-08T13:49:25Z) - Learning-Based Verification of Stochastic Dynamical Systems with Neural Network Policies [7.9898826915621965]
We use a verification procedure that trains another neural network, which acts as a certificate proving that the policy satisfies the task.
For reach-avoid tasks, it suffices to show that this certificate network is a reach-avoid supermartingale (RASM)
arXiv Detail & Related papers (2024-06-02T18:19:19Z) - Enhancing lattice kinetic schemes for fluid dynamics with Lattice-Equivariant Neural Networks [79.16635054977068]
We present a new class of equivariant neural networks, dubbed Lattice-Equivariant Neural Networks (LENNs)
Our approach develops within a recently introduced framework aimed at learning neural network-based surrogate models Lattice Boltzmann collision operators.
Our work opens towards practical utilization of machine learning-augmented Lattice Boltzmann CFD in real-world simulations.
arXiv Detail & Related papers (2024-05-22T17:23:15Z) - An Analytic Solution to Covariance Propagation in Neural Networks [10.013553984400488]
This paper presents a sample-free moment propagation technique to accurately characterize the input-output distributions of neural networks.
A key enabler of our technique is an analytic solution for the covariance of random variables passed through nonlinear activation functions.
The wide applicability and merits of the proposed technique are shown in experiments analyzing the input-output distributions of trained neural networks and training Bayesian neural networks.
arXiv Detail & Related papers (2024-03-24T14:08:24Z) - Online Network Source Optimization with Graph-Kernel MAB [62.6067511147939]
We propose Grab-UCB, a graph- kernel multi-arms bandit algorithm to learn online the optimal source placement in large scale networks.
We describe the network processes with an adaptive graph dictionary model, which typically leads to sparse spectral representations.
We derive the performance guarantees that depend on network parameters, which further influence the learning curve of the sequential decision strategy.
arXiv Detail & Related papers (2023-07-07T15:03:42Z) - The Cascaded Forward Algorithm for Neural Network Training [61.06444586991505]
We propose a new learning framework for neural networks, namely Cascaded Forward (CaFo) algorithm, which does not rely on BP optimization as that in FF.
Unlike FF, our framework directly outputs label distributions at each cascaded block, which does not require generation of additional negative samples.
In our framework each block can be trained independently, so it can be easily deployed into parallel acceleration systems.
arXiv Detail & Related papers (2023-03-17T02:01:11Z) - Lifted Bregman Training of Neural Networks [28.03724379169264]
We introduce a novel mathematical formulation for the training of feed-forward neural networks with (potentially non-smooth) proximal maps as activation functions.
This formulation is based on Bregman and a key advantage is that its partial derivatives with respect to the network's parameters do not require the computation of derivatives of the network's activation functions.
We present several numerical results that demonstrate that these training approaches can be equally well or even better suited for the training of neural network-based classifiers and (denoising) autoencoders with sparse coding.
arXiv Detail & Related papers (2022-08-18T11:12:52Z) - Scalable computation of prediction intervals for neural networks via
matrix sketching [79.44177623781043]
Existing algorithms for uncertainty estimation require modifying the model architecture and training procedure.
This work proposes a new algorithm that can be applied to a given trained neural network and produces approximate prediction intervals.
arXiv Detail & Related papers (2022-05-06T13:18:31Z) - Neural Network Training with Asymmetric Crosspoint Elements [1.0773924713784704]
asymmetric conductance modulation of practical resistive devices critically degrades the classification of networks trained with conventional algorithms.
Here, we describe and experimentally demonstrate an alternative fully-parallel training algorithm: Hamiltonian Descent.
We provide critical intuition on why device asymmetry is fundamentally incompatible with conventional training algorithms and how the new approach exploits it as a useful feature instead.
arXiv Detail & Related papers (2022-01-31T17:41:36Z) - Learning Neural Network Subspaces [74.44457651546728]
Recent observations have advanced our understanding of the neural network optimization landscape.
With a similar computational cost as training one model, we learn lines, curves, and simplexes of high-accuracy neural networks.
With a similar computational cost as training one model, we learn lines, curves, and simplexes of high-accuracy neural networks.
arXiv Detail & Related papers (2021-02-20T23:26:58Z) - Adaptive Serverless Learning [114.36410688552579]
We propose a novel adaptive decentralized training approach, which can compute the learning rate from data dynamically.
Our theoretical results reveal that the proposed algorithm can achieve linear speedup with respect to the number of workers.
To reduce the communication-efficient overhead, we further propose a communication-efficient adaptive decentralized training approach.
arXiv Detail & Related papers (2020-08-24T13:23:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.