論文の概要: Planning-Driven Programming: A Large Language Model Programming Workflow
- arxiv url: http://arxiv.org/abs/2411.14503v1
- Date: Thu, 21 Nov 2024 08:31:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-25 15:04:25.832679
- Title: Planning-Driven Programming: A Large Language Model Programming Workflow
- Title(参考訳): 計画駆動プログラミング: 大規模言語モデルプログラミングワークフロー
- Authors: Chao Lei, Yanchuan Chang, Nir Lipovetzky, Krista A. Ehinger,
- Abstract要約: 大規模言語モデル(LLM)は自然言語処理タスクに強い性能を持つ。
最近の研究は、コード生成精度を改善する複数のサンプリング手法や、コードを洗練するためのプログラム修復手法を提案する。
初期コード生成とその後の改良の両方を改善するために,LLMプログラミングワークフロー(LPW)を提案する。
- 参考スコア(独自算出の注目度): 8.827173113748701
- License:
- Abstract: The strong performance of large language models (LLMs) on natural language processing tasks raises extensive discussion on their application to code generation. Recent work suggests multiple sampling approaches to improve initial code generation accuracy or program repair approaches to refine the code. However, these methods suffer from LLMs' inefficiencies and limited reasoning capacity. In this work, we propose an LLM programming workflow (LPW) designed to improve both initial code generation and subsequent refinements within a structured two-phase workflow. Specifically, in the solution generation phase, the LLM first outlines a solution plan that decomposes the problem into manageable sub-problems and then verifies the generated solution plan through visible test cases. Subsequently, in the code implementation phase, the LLM initially drafts a code according to the solution plan and its verification. If the generated code fails the visible tests, the plan verification serves as the intended natural language solution to inform the refinement process for correcting bugs. We further introduce SLPW, a sampling variant of LPW, which initially generates multiple solution plans and plan verifications, produces a program for each plan and its verification, and refines each program as necessary until one successfully passes the visible tests. Compared to the state-of-the-art methods across various existing LLMs, our experimental results show that LPW significantly improves the Pass@1 accuracy by up to 16.4% on well-established text-to-code generation benchmarks, especially with a notable improvement of around 10% on challenging benchmarks. Additionally, SLPW demonstrates up to a 5.6% improvement over LPW and sets new state-of-the-art Pass@1 accuracy on various benchmarks, e.g., 98.2% on HumanEval, 84.8% on MBPP, 64.0% on APPS, and 35.3% on CodeContest, using GPT-4o as the backbone.
- Abstract(参考訳): 自然言語処理タスクにおける大規模言語モデル(LLM)の強力なパフォーマンスは、それらのコード生成への応用に関する広範な議論を呼び起こす。
最近の研究は、コード生成精度を改善する複数のサンプリング手法や、コードを洗練するためのプログラム修復手法を提案する。
しかし、これらの手法はLLMの非効率性と限られた推論能力に悩まされている。
本研究では、構造化された2段階のワークフローにおいて、初期コード生成とその後の改善の両方を改善するために設計されたLPMプログラミングワークフロー(LPW)を提案する。
具体的には、ソリューション生成フェーズにおいて、LSMはまず、問題を管理可能なサブプロブレムに分解するソリューションプランを概説し、次に、可視的なテストケースを通して生成されたソリューションプランを検証する。
その後、コード実装フェーズにおいて、LLMは最初、ソリューション計画と検証に従ってコードをドラフトする。
生成されたコードが可視性テストに失敗すると、計画検証が意図された自然言語ソリューションとして機能し、バグを修正するための改善プロセスが通知される。
さらに、LPWのサンプリング版であるSLPWを導入し、最初は複数のソリューションプランと計画検証を生成し、各計画とその検証のためのプログラムを作成し、可視試験に合格するまで必要に応じてプログラムを洗練させる。
既存のLLMにおける最先端の手法と比較すると、LPWはよく確立されたテキスト・コード生成ベンチマークにおいてPass@1の精度を最大16.4%向上し、特に挑戦的なベンチマークでは約10%向上した。
さらに、SLPWはLPWよりも最大5.6%改善され、HumanEvalで98.2%、MBPPで84.8%、APPSで64.0%、CodeContestで35.3%、GPT-4oをバックボーンとして、様々なベンチマークで新しい最先端のPass@1精度が設定された。
関連論文リスト
- ROCODE: Integrating Backtracking Mechanism and Program Analysis in Large Language Models for Code Generation [31.363781211927947]
大規模言語モデル(LLM)は、コード生成において素晴らしいパフォーマンスを達成した。
LLMはコード生成時にエラーの蓄積に影響を受けやすい。
コード生成のためのLLMにバックトラック機構とプログラム解析を統合したROCODEを提案する。
論文 参考訳(メタデータ) (2024-11-11T16:39:13Z) - Enhancing Mathematical Reasoning in LLMs by Stepwise Correction [39.67266805233599]
Best-of-N復号法は、大規模言語モデル(LLM)に複数の解を生成するように指示し、それぞれがスコアリング関数を使用してスコアし、数学的な推論問題に対する最終解として最も高いスコアを選択する。
本稿では,LLMが生成した推論経路の誤りステップを特定し,修正するのに役立つ,ステップワイズ補正(StepCo)という新しいプロンプト手法を提案する。
バリデーション・then-reviseプロセスは、回答の正しさを向上するだけでなく、生成に必要なパスを減らしてトークン消費を減らす。
論文 参考訳(メタデータ) (2024-10-16T18:18:42Z) - Large Language Models as Code Executors: An Exploratory Study [29.545321608864295]
本稿では,Large Language Models (LLM) をコードエグゼキュータとして探索する。
OpenAIのo1、GPT-4o、GPT-3.5、DeepSeek、Qwen-Coderなど、さまざまなLLMでこの実現可能性を調べています。
我々は,コードスニペットを行単位で処理し,弱いモデルの精度を平均7.22%向上させるIIP(Iterative Instruction Prompting)技術を導入する。
論文 参考訳(メタデータ) (2024-10-09T08:23:22Z) - Improving LLM Reasoning through Scaling Inference Computation with Collaborative Verification [52.095460362197336]
大規模言語モデル(LLM)は一貫性と正確な推論に苦しむ。
LLMは、主に正しいソリューションに基づいて訓練され、エラーを検出して学習する能力を減らす。
本稿では,CoT(Chain-of-Thought)とPoT(Program-of-Thought)を組み合わせた新しい協調手法を提案する。
論文 参考訳(メタデータ) (2024-10-05T05:21:48Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
大規模言語モデル(LLM)は多くの自然言語タスクにおいて印象的な能力を示している。
LLMは多段階推論を行う際にエラー、幻覚、矛盾する文を生成する傾向がある。
本稿では,LLMの復号化過程を検討計画で導くためのフレームワークであるQ*を紹介する。
論文 参考訳(メタデータ) (2024-06-20T13:08:09Z) - Navigating the Labyrinth: Evaluating and Enhancing LLMs' Ability to Reason About Search Problems [59.72548591120689]
我々は,11種類の検索問題を含む新しいベンチマークであるSearchBenchを紹介する。
もっとも先進的なLCMでさえ、これらの問題をエンドツーエンドのテキストで解決することができないことを示す。
LLMにその問題を解決するコードを生成するように指示することは助けになるが、GPT4のパフォーマンスは11.7%向上した。
論文 参考訳(メタデータ) (2024-06-18T00:44:58Z) - Validating LLM-Generated Programs with Metamorphic Prompt Testing [8.785973653167112]
大規模言語モデル(LLM)は、ソフトウェア開発ライフサイクルにますます統合されています。
本稿では,これらの課題に対処するため,メタモルフィック・プロンプト・テストと呼ばれる新しい手法を提案する。
我々のHumanEvalに対する評価は,GPT-4が生成する誤プログラムの75%を,偽陽性率8.6%で検出できることを示す。
論文 参考訳(メタデータ) (2024-06-11T00:40:17Z) - StepCoder: Improve Code Generation with Reinforcement Learning from
Compiler Feedback [58.20547418182074]
2つの主要コンポーネントからなるコード生成の新しいフレームワークであるStepCoderを紹介します。
CCCSは、長いシーケンスのコード生成タスクをCurriculum of Code Completion Subtaskに分割することで、探索課題に対処する。
FGOは、未実行のコードセグメントをマスクすることでのみモデルを最適化し、Fine-Grained Optimizationを提供する。
提案手法は,出力空間を探索し,対応するベンチマークにおいて最先端の手法より優れた性能を発揮する。
論文 参考訳(メタデータ) (2024-02-02T13:14:31Z) - Large Language Models for Test-Free Fault Localization [11.080712737595174]
テストカバレッジ情報なしでバグの行を特定できる言語モデルに基づくフォールトローカライズ手法を提案する。
5億5000万、60億、160億のパラメータを持つ言語モデルを、手作業でキュレートされた小さなプログラムコーパスで微調整します。
実験により、LLMAOは最先端の機械学習フォールトローカライゼーション(MLFL)ベースラインを2.3%-54.4%改善し、トップ5の結果を14.4%-35.6%改善した。
論文 参考訳(メタデータ) (2023-10-03T01:26:39Z) - Contrastive Decoding Improves Reasoning in Large Language Models [55.16503283583076]
コントラストデコーディングは,様々な推論タスクにおいて,グリージーデコーディングよりもアウト・オブ・ボックスの大幅な改善を実現することを示す。
本稿では,LLaMA-65BがHellaSwag Commonsense reasoning benchmark上でLLaMA 2, GPT-3.5, PaLM 2-Lより優れていることを示す。
論文 参考訳(メタデータ) (2023-09-17T00:29:32Z) - LEVER: Learning to Verify Language-to-Code Generation with Execution [64.36459105535]
本稿では,プログラムの実行結果の検証を学習することで,言語からコードへの生成を改善するシンプルな手法であるLEVERを提案する。
具体的には、LLMからサンプリングされたプログラムが、自然言語入力、プログラム自体とその実行結果に基づいて正しいか否かを判定するために、検証者を訓練する。
LEVER はベースコード LLMs (4.6% から 10.9% まで) を継続的に改善し、それらすべてに対して新しい最先端の結果を得る。
論文 参考訳(メタデータ) (2023-02-16T18:23:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。