論文の概要: End-to-End Convolutional Activation Anomaly Analysis for Anomaly Detection
- arxiv url: http://arxiv.org/abs/2411.14509v1
- Date: Thu, 21 Nov 2024 10:22:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-25 18:36:39.995818
- Title: End-to-End Convolutional Activation Anomaly Analysis for Anomaly Detection
- Title(参考訳): 終端畳み込み動作異常解析による異常検出
- Authors: Aleksander Kozłowski, Daniel Ponikowski, Piotr Żukiewicz, Paweł Twardowski,
- Abstract要約: エンドツーエンドの畳み込みアクティベーション異常解析(E2E-CA$3$)
エンドツーエンドの畳み込み動作異常解析(E2E-CA$3$)を提案する。
これは、Sperl、Schulze、B"ottingerによって提案されたA$3$の異常検出アプローチの重要な拡張である。
- 参考スコア(独自算出の注目度): 41.94295877935867
- License:
- Abstract: We propose an End-to-end Convolutional Activation Anomaly Analysis (E2E-CA$^3$), which is a significant extension of A$^3$ anomaly detection approach proposed by Sperl, Schulze and B\"ottinger, both in terms of architecture and scope of application. In contrast to the original idea, we utilize a convolutional autoencoder as a target network, which allows for natural application of the method both to image and tabular data. The alarm network is also designed as a CNN, where the activations of convolutional layers from CAE are stacked together into $k+1-$dimensional tensor. Moreover, we combine the classification loss of the alarm network with the reconstruction error of the target CAE, as a "best of both worlds" approach, which greatly increases the versatility of the network. The evaluation shows that despite generally straightforward and lightweight architecture, it has a very promising anomaly detection performance on common datasets such as MNIST, CIFAR-10 and KDDcup99.
- Abstract(参考訳): 本稿では,Sperl,Schulze,B\"ottinger両氏が提案するA$^3$の異常検出手法を,アーキテクチャとアプリケーションスコープの両面において有意な拡張として,エンドツーエンドの畳み込みアクティベーション異常解析(E2E-CA$^3$)を提案する。
この評価は、概して単純で軽量なアーキテクチャにもかかわらず、MNIST、CIFAR-10、KDDcup99のような一般的なデータセットで非常に有望な異常検出性能を持つことを示している。
関連論文リスト
- TEN-GUARD: Tensor Decomposition for Backdoor Attack Detection in Deep
Neural Networks [3.489779105594534]
本稿では,ネットワークアクティベーションに適用した2つのテンソル分解法によるバックドア検出手法を提案する。
これは、複数のモデルを同時に分析する機能など、既存の検出方法と比較して、多くの利点がある。
その結果,現在の最先端手法よりも,バックドアネットワークを高精度かつ効率的に検出できることがわかった。
論文 参考訳(メタデータ) (2024-01-06T03:08:28Z) - Improved Dense Nested Attention Network Based on Transformer for
Infrared Small Target Detection [8.388564430699155]
深層学習に基づく赤外線小ターゲット検出は、複雑な背景と動的背景から小さなターゲットを分離する際、独特な利点をもたらす。
畳み込みニューラルネットワーク(CNN)の深さが増加するにつれて、赤外線小ターゲットの特徴は徐々に弱まる。
本稿では,トランスアーキテクチャに基づく高密度ネストアテンションネットワーク (IDNANet) を提案する。
論文 参考訳(メタデータ) (2023-11-15T07:29:24Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
本稿では,粗粒度パイプラインと特徴模倣学習に基づく小型物体検出に適した2段階フレームワークを提案する。
CFINetは、大規模な小さなオブジェクト検出ベンチマークであるSODA-DとSODA-Aで最先端の性能を達成する。
論文 参考訳(メタデータ) (2023-08-18T13:13:09Z) - Semi-Supervised and Long-Tailed Object Detection with CascadeMatch [91.86787064083012]
そこで我々はCascadeMatchと呼ばれる新しい擬似ラベル型検出器を提案する。
我々の検出器は、プログレッシブな信頼しきい値を持つ多段検出ヘッドを備えたカスケードネットワークアーキテクチャを備えている。
CascadeMatchは、長い尾のオブジェクト検出の処理において、既存の最先端の半教師付きアプローチを超越していることを示す。
論文 参考訳(メタデータ) (2023-05-24T07:09:25Z) - ARCADE: Adversarially Regularized Convolutional Autoencoder for Network
Anomaly Detection [0.0]
ARCADEと呼ばれる、教師なしの異常に基づくディープラーニング検出システム。
リソース制約のある環境でのオンライン検出に適した畳み込みオートエンコーダ(AE)を提案する。
論文 参考訳(メタデータ) (2022-05-03T11:47:36Z) - Learning Asymmetric Embedding for Attributed Networks via Convolutional
Neural Network [19.611523749659355]
AAGCNと呼ばれる畳み込みグラフニューラルネットワークに基づく新しい非対称属性ネットワーク埋め込みモデルを提案する。
主な考え方は、有向属性ネットワークの非対称な近接性と非対称な類似性を極大に保存することである。
ネットワーク再構成,リンク予測,ノード分類,可視化タスクのための実世界の3つのネットワーク上でのAAGCNの性能を検証した。
論文 参考訳(メタデータ) (2022-02-13T13:35:15Z) - The KFIoU Loss for Rotated Object Detection [115.334070064346]
本稿では,SkewIoU損失とトレンドレベルアライメントを両立できる近似的損失を考案する上で,有効な方法の1つとして論じる。
具体的には、対象をガウス分布としてモデル化し、SkewIoUのメカニズムを本質的に模倣するためにカルマンフィルタを採用する。
KFIoUと呼ばれる新たな損失は実装が容易で、正確なSkewIoUよりもうまく動作する。
論文 参考訳(メタデータ) (2022-01-29T10:54:57Z) - Graph-based Algorithm Unfolding for Energy-aware Power Allocation in
Wireless Networks [27.600081147252155]
我々は,無線通信網におけるエネルギー効率を最大化する新しいグラフ要約フレームワークを開発した。
無線ネットワークデータのモデルに望ましい特性である置換訓練について述べる。
結果は、異なるネットワークトポロジにまたがる一般化可能性を示している。
論文 参考訳(メタデータ) (2022-01-27T20:23:24Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
本論文では,アトリビュートネットワーク上の異常検出のためのコントラスト型自己監視学習フレームワークを提案する。
このフレームワークは、新しいタイプのコントラストインスタンスペアをサンプリングすることで、ネットワークデータからのローカル情報を完全に活用します。
高次元特性と局所構造から情報埋め込みを学習するグラフニューラルネットワークに基づくコントラスト学習モデルを提案する。
論文 参考訳(メタデータ) (2021-02-27T03:17:20Z) - Dual Adversarial Auto-Encoders for Clustering [152.84443014554745]
教師なしクラスタリングのためのDual-AAE(Dual-AAE)を提案する。
Dual-AAEの目的関数に対する変分推論を行うことで,一対のオートエンコーダをトレーニングすることで最適化可能な新たな再構成損失を導出する。
4つのベンチマーク実験により、Dual-AAEは最先端のクラスタリング手法よりも優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2020-08-23T13:16:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。