BrightVAE: Luminosity Enhancement in Underexposed Endoscopic Images
- URL: http://arxiv.org/abs/2411.14663v1
- Date: Fri, 22 Nov 2024 01:41:27 GMT
- Title: BrightVAE: Luminosity Enhancement in Underexposed Endoscopic Images
- Authors: Farzaneh Koohestani, Zahra Nabizadeh, Nader Karimi, Shahram Shirani, Shadrokh Samavi,
- Abstract summary: Underexposed endoscopic images often suffer from reduced contrast and uneven brightness.
We introduce BrightVAE, an architecture based on the hierarchical Vector Quantized Variational Autoencoder (hierarchical VQ-VAE)
Our architecture is meticulously designed to tackle the unique challenges inherent in endoscopic imaging.
- Score: 6.687072439993227
- License:
- Abstract: The enhancement of image luminosity is especially critical in endoscopic images. Underexposed endoscopic images often suffer from reduced contrast and uneven brightness, significantly impacting diagnostic accuracy and treatment planning. Internal body imaging is challenging due to uneven lighting and shadowy regions. Enhancing such images is essential since precise image interpretation is crucial for patient outcomes. In this paper, we introduce BrightVAE, an architecture based on the hierarchical Vector Quantized Variational Autoencoder (hierarchical VQ-VAE) tailored explicitly for enhancing luminosity in low-light endoscopic images. Our architecture is meticulously designed to tackle the unique challenges inherent in endoscopic imaging, such as significant variations in illumination and obscured details due to poor lighting conditions. The proposed model emphasizes advanced feature extraction from three distinct viewpoints-incorporating various receptive fields, skip connections, and feature attentions to robustly enhance image quality and support more accurate medical diagnoses. Through rigorous experimental analysis, we demonstrate the effectiveness of these techniques in enhancing low-light endoscopic images. To evaluate the performance of our architecture, we employ three widely recognized metrics-SSIM, PSNR, and LPIPS-specifically on Endo4IE dataset, which consists of endoscopic images. We evaluated our method using the Endo4IE dataset, which consists exclusively of endoscopic images, and showed significant advancements over the state-of-the-art methods for enhancing luminosity in endoscopic imaging.
Related papers
- Depth-Aware Endoscopic Video Inpainting [11.885452717243744]
Video inpainting fills in corrupted video content with plausible replacements.
Recent advances in endoscopic video inpainting have shown potential for enhancing the quality of endoscopic videos.
They mainly repair 2D visual information without preserving crucial 3D spatial details for clinical reference.
We introduce a novel Depth-aware Endoscopic Video Inpainting framework.
arXiv Detail & Related papers (2024-07-02T21:28:36Z) - CodeEnhance: A Codebook-Driven Approach for Low-Light Image Enhancement [97.95330185793358]
Low-light image enhancement (LLIE) aims to improve low-illumination images.
Existing methods face two challenges: uncertainty in restoration from diverse brightness degradations and loss of texture and color information.
We propose a novel enhancement approach, CodeEnhance, by leveraging quantized priors and image refinement.
arXiv Detail & Related papers (2024-04-08T07:34:39Z) - FLex: Joint Pose and Dynamic Radiance Fields Optimization for Stereo Endoscopic Videos [79.50191812646125]
Reconstruction of endoscopic scenes is an important asset for various medical applications, from post-surgery analysis to educational training.
We adress the challenging setup of a moving endoscope within a highly dynamic environment of deforming tissue.
We propose an implicit scene separation into multiple overlapping 4D neural radiance fields (NeRFs) and a progressive optimization scheme jointly optimizing for reconstruction and camera poses from scratch.
This improves the ease-of-use and allows to scale reconstruction capabilities in time to process surgical videos of 5,000 frames and more; an improvement of more than ten times compared to the state of the art while being agnostic to external tracking information
arXiv Detail & Related papers (2024-03-18T19:13:02Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
Deep Learning (DL) models have achieved state-of-the-art performance in diagnosing multiple diseases using reconstructed images as input.
DL models are sensitive to varying artifacts as it leads to changes in the input data distribution between the training and testing phases.
We propose to use other normalization techniques, such as Group Normalization and Layer Normalization, to inject robustness into model performance against varying image artifacts.
arXiv Detail & Related papers (2023-06-23T03:09:03Z) - Multi-Scale Structural-aware Exposure Correction for Endoscopic Imaging [0.879504058268139]
This contribution presents an extension to the objective function of LMSPEC, a method originally introduced to enhance images from natural scenes.
It is used here for the exposure correction in endoscopic imaging and the preservation of structural information.
Tested on the Endo4IE dataset, the proposed implementation has yielded a SSIM increase of 4.40% and 4.21% for over- and underexposed images, respectively.
arXiv Detail & Related papers (2022-10-26T21:04:54Z) - A Novel Hybrid Endoscopic Dataset for Evaluating Machine Learning-based
Photometric Image Enhancement Models [0.9236074230806579]
This work introduces a new synthetically generated data-set generated by a generative adversarial techniques.
It also explores both shallow based and deep learning-based image-enhancement methods in overexposed and underexposed lighting conditions.
arXiv Detail & Related papers (2022-07-06T01:47:17Z) - OADAT: Experimental and Synthetic Clinical Optoacoustic Data for
Standardized Image Processing [62.993663757843464]
Optoacoustic (OA) imaging is based on excitation of biological tissues with nanosecond-duration laser pulses followed by detection of ultrasound waves generated via light-absorption-mediated thermoelastic expansion.
OA imaging features a powerful combination between rich optical contrast and high resolution in deep tissues.
No standardized datasets generated with different types of experimental set-up and associated processing methods are available to facilitate advances in broader applications of OA in clinical settings.
arXiv Detail & Related papers (2022-06-17T08:11:26Z) - A Temporal Learning Approach to Inpainting Endoscopic Specularities and
Its effect on Image Correspondence [13.25903945009516]
We propose using a temporal generative adversarial network (GAN) to inpaint the hidden anatomy under specularities.
This is achieved using in-vivo data of gastric endoscopy (Hyper-Kvasir) in a fully unsupervised manner.
We also assess the effect of our method in computer vision tasks that underpin 3D reconstruction and camera motion estimation.
arXiv Detail & Related papers (2022-03-31T13:14:00Z) - Self-Supervised Monocular Depth and Ego-Motion Estimation in Endoscopy:
Appearance Flow to the Rescue [38.168759071532676]
Self-supervised learning technology has been applied to calculate depth and ego-motion from monocular videos.
In this work, we introduce a novel concept referred to as appearance flow to address the brightness inconsistency problem.
We build a unified self-supervised framework to estimate monocular depth and ego-motion simultaneously in endoscopic scenes.
arXiv Detail & Related papers (2021-12-15T13:51:10Z) - NuI-Go: Recursive Non-Local Encoder-Decoder Network for Retinal Image
Non-Uniform Illumination Removal [96.12120000492962]
The quality of retinal images is often clinically unsatisfactory due to eye lesions and imperfect imaging process.
One of the most challenging quality degradation issues in retinal images is non-uniform illumination.
We propose a non-uniform illumination removal network for retinal image, called NuI-Go.
arXiv Detail & Related papers (2020-08-07T04:31:33Z) - Modeling and Enhancing Low-quality Retinal Fundus Images [167.02325845822276]
Low-quality fundus images increase uncertainty in clinical observation and lead to the risk of misdiagnosis.
We propose a clinically oriented fundus enhancement network (cofe-Net) to suppress global degradation factors.
Experiments on both synthetic and real images demonstrate that our algorithm effectively corrects low-quality fundus images without losing retinal details.
arXiv Detail & Related papers (2020-05-12T08:01:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.