Towards Flexibility and Interpretability of Gaussian Process State-Space
Model
- URL: http://arxiv.org/abs/2301.08843v3
- Date: Thu, 6 Apr 2023 15:07:11 GMT
- Title: Towards Flexibility and Interpretability of Gaussian Process State-Space
Model
- Authors: Zhid Lin, Feng Yin and Juan Maro\~nas
- Abstract summary: We propose a new class of probabilistic state-space models called TGPSSMs.
TGPSSMs leverage a parametric normalizing flow to enrich the GP priors in the standard GPSSM.
We present a scalable variational inference algorithm that offers a flexible and optimal structure for the variational distribution of latent states.
- Score: 4.75409418039844
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Gaussian process state-space model (GPSSM) has garnered considerable
attention over the past decade. However, the standard GP with a preliminary
kernel, such as the squared exponential kernel or Mat\'{e}rn kernel, that is
commonly used in GPSSM studies, limits the model's representation power and
substantially restricts its applicability to complex scenarios. To address this
issue, we propose a new class of probabilistic state-space models called
TGPSSMs, which leverage a parametric normalizing flow to enrich the GP priors
in the standard GPSSM, enabling greater flexibility and expressivity.
Additionally, we present a scalable variational inference algorithm that offers
a flexible and optimal structure for the variational distribution of latent
states. The proposed algorithm is interpretable and computationally efficient
due to the sparse GP representation and the bijective nature of normalizing
flow. Moreover, we incorporate a constrained optimization framework into the
algorithm to enhance the state-space representation capabilities and optimize
the hyperparameters, leading to superior learning and inference performance.
Experimental results on synthetic and real datasets corroborate that the
proposed TGPSSM outperforms several state-of-the-art methods. The accompanying
source code is available at \url{https://github.com/zhidilin/TGPSSM}.
Related papers
- Data-driven Modeling and Inference for Bayesian Gaussian Process ODEs
via Double Normalizing Flows [28.62579476863723]
We introduce normalizing flows to re parameterize the ODE vector field, resulting in a data-driven prior distribution.
We also apply normalizing flows to the posterior inference of GP ODEs to resolve the issue of strong mean-field assumptions.
We validate the effectiveness of our approach on simulated dynamical systems and real-world human motion data.
arXiv Detail & Related papers (2023-09-17T09:28:47Z) - Towards Efficient Modeling and Inference in Multi-Dimensional Gaussian
Process State-Space Models [11.13664702335756]
We propose to integrate the efficient transformed Gaussian process (ETGP) into the GPSSM to efficiently model the transition function in high-dimensional latent state space.
We also develop a corresponding variational inference algorithm that surpasses existing methods in terms of parameter count and computational complexity.
arXiv Detail & Related papers (2023-09-03T04:34:33Z) - Learning Regions of Interest for Bayesian Optimization with Adaptive
Level-Set Estimation [84.0621253654014]
We propose a framework, called BALLET, which adaptively filters for a high-confidence region of interest.
We show theoretically that BALLET can efficiently shrink the search space, and can exhibit a tighter regret bound than standard BO.
arXiv Detail & Related papers (2023-07-25T09:45:47Z) - Linear Time GPs for Inferring Latent Trajectories from Neural Spike
Trains [7.936841911281107]
We propose cvHM, a general inference framework for latent GP models leveraging Hida-Mat'ern kernels and conjugate variational inference (CVI)
We are able to perform variational inference of latent neural trajectories with linear time complexity for arbitrary likelihoods.
arXiv Detail & Related papers (2023-06-01T16:31:36Z) - Output-Dependent Gaussian Process State-Space Model [34.34146690947695]
This paper proposes an output-dependent and more realistic GPSSM.
Experiments on both synthetic and real datasets demonstrate the superiority of the output-dependent GPSSM in terms of learning and inference performance.
arXiv Detail & Related papers (2022-12-15T04:05:39Z) - Non-Gaussian Gaussian Processes for Few-Shot Regression [71.33730039795921]
We propose an invertible ODE-based mapping that operates on each component of the random variable vectors and shares the parameters across all of them.
NGGPs outperform the competing state-of-the-art approaches on a diversified set of benchmarks and applications.
arXiv Detail & Related papers (2021-10-26T10:45:25Z) - Incremental Ensemble Gaussian Processes [53.3291389385672]
We propose an incremental ensemble (IE-) GP framework, where an EGP meta-learner employs an it ensemble of GP learners, each having a unique kernel belonging to a prescribed kernel dictionary.
With each GP expert leveraging the random feature-based approximation to perform online prediction and model update with it scalability, the EGP meta-learner capitalizes on data-adaptive weights to synthesize the per-expert predictions.
The novel IE-GP is generalized to accommodate time-varying functions by modeling structured dynamics at the EGP meta-learner and within each GP learner.
arXiv Detail & Related papers (2021-10-13T15:11:25Z) - Gaussian Process-based Min-norm Stabilizing Controller for
Control-Affine Systems with Uncertain Input Effects and Dynamics [90.81186513537777]
We propose a novel compound kernel that captures the control-affine nature of the problem.
We show that this resulting optimization problem is convex, and we call it Gaussian Process-based Control Lyapunov Function Second-Order Cone Program (GP-CLF-SOCP)
arXiv Detail & Related papers (2020-11-14T01:27:32Z) - Bayesian Sparse learning with preconditioned stochastic gradient MCMC
and its applications [5.660384137948734]
The proposed algorithm converges to the correct distribution with a controllable bias under mild conditions.
We show that the proposed algorithm canally converge to the correct distribution with a controllable bias under mild conditions.
arXiv Detail & Related papers (2020-06-29T20:57:20Z) - A Dynamical Systems Approach for Convergence of the Bayesian EM
Algorithm [59.99439951055238]
We show how (discrete-time) Lyapunov stability theory can serve as a powerful tool to aid, or even lead, in the analysis (and potential design) of optimization algorithms that are not necessarily gradient-based.
The particular ML problem that this paper focuses on is that of parameter estimation in an incomplete-data Bayesian framework via the popular optimization algorithm known as maximum a posteriori expectation-maximization (MAP-EM)
We show that fast convergence (linear or quadratic) is achieved, which could have been difficult to unveil without our adopted S&C approach.
arXiv Detail & Related papers (2020-06-23T01:34:18Z) - Stochastic batch size for adaptive regularization in deep network
optimization [63.68104397173262]
We propose a first-order optimization algorithm incorporating adaptive regularization applicable to machine learning problems in deep learning framework.
We empirically demonstrate the effectiveness of our algorithm using an image classification task based on conventional network models applied to commonly used benchmark datasets.
arXiv Detail & Related papers (2020-04-14T07:54:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.